Author: Kalantar, D.H.
Paper Title Page
MOD3O03 Shot Rate Improvement Strive for the National Ignition Facility (NIF) 56
 
  • G.K. Brunton, G.A. Bowers, A.D. Conder, J.-M.G. Di Nicola, P. Di Nicola, M.A. Fedorov, B.T. Fishler, R. Fleming, D.H. Kalantar, G. Lau, D.G. Mathisen, V.J. Miller Kamm, V. Pacheu, M. Paul, R.K. Reed, J. Rouse, R.J. Sanchez, M.J. Shaw, E.A. Stout, S. Weaver, E.F. Wilson
    LLNL, Livermore, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy. The energy, temperatures and pressures capable of being generated allow scientists the ability to generate conditions similar to the center of the sun and explore physics of planetary interiors, supernovae, black holes and thermonuclear burn. NIF has transitioned to a 24x7 operational facility and in the past year significant focus has been placed on increasing the volume of experimental shots capable of being conducted so as to satisfy the demand from the wide range of user groups. The goal for the current fiscal year is a shot rate of 300 (> 50% increase over the previous year), increasing to a sustainable rate of 400 the year after. The primary focus areas to achieve these increases are; making more shot time available, improvements in experiment scheduling, and reducing the duration of a shot cycle. This paper will discuss the control system improvements implemented and planned to reduce the shot cycle duration and the systematic approaches taken to identify and prioritize them.
 
slides icon Slides MOD3O03 [3.420 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)