Author: Kago, M.
Paper Title Page
WED3O03 MADOCA II Data Logging System Using NoSQL Database for SPRING-8 648
 
  • A. Yamashita, M. Kago
    JASRI/SPring-8, Hyogo-ken, Japan
 
  The data logging system for SPring-8 was upgraded to the new system using NoSQL database, as a part of a MADOCA II framework. It has been collecting all the log data required for accelerator control without any trouble since the upgrade. In the past, the system powered by a relational database management system (RDBMS) had been operating since 1997. It had grown with the development of accelerators. However, the system with RDBMS became difficult to handle new requirements like variable length data storage, data mining from large volume data and fast data acquisition. New software technologies gave solution for the problems. In the new system, we adopted two NoSQL databases, Apache Cassandra and Redis, for data storage. Apache Cassandra is utilized for perpetual archive. It is a scalable and highly available column oriented database suitable for time series data. Redis is used for the real time data cache because of a very fast in-memory key-value store. Data acquisition part of the new system was also built based on ZeroMQ message packed by MessagePack. The operation of the new system started in January 2015 after the long term evaluation over one year.  
slides icon Slides WED3O03 [0.513 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF014 A Data Acquisition System for Abnormal RF Waveform at SACLA 721
 
  • M. Ishii, M. Kago
    JASRI/SPring-8, Hyogo-ken, Japan
  • T. Fukui
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • T. Hasegawa, M. Yoshioka
    SES, Hyogo-pref., Japan
  • T. Inagaki, H. Maesaka, T. Ohshima, Y. Otake
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • T. Maruyama
    RIKEN/SPring-8, Hyogo, Japan
 
  At the X-ray Free Electron Laser (XFEL) facility, SACLA, an event-synchronized data acquisition system has been utilized for the XFEL operation. This system collects every shot-by-shot data, such as point data of the phase and amplitude of the RF cavity pickup signals, in synchronization with the beam operation cycle. This system also acquires RF waveform data every 10 minutes. In addition to the periodic waveform acquisition, an abnormal RF waveform that suddenly occurs should be collected for failure diagnostics. Therefore, we developed an abnormal RF waveform data acquisition (DAQ) system, which consists of the VME systems, a cache server, and a NoSQL database system, Apache Cassandra. When the VME system detects an abnormal RF waveform, it collects all related waveforms of the same shot. The waveforms are stored in Cassandra through the cache server. Before the installation to SACLA, we ensured the performance with a prototype system. In 2014, we installed the DAQ system into the injection part with five VME systems. In 2015, we will acquire waveforms from the low-level RF control system configured by 74 VME systems at the SACLA accelerator.  
poster icon Poster WEPGF014 [0.978 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)