Author: Forsberg, J.
Paper Title Page
MOPGF065 Motion Control on the Max IV Soft X-Ray Beamlines With Tango and Sardana 240
 
  • M. Lindberg, J. Forsberg, L. Kjellsson, A.M. Milan, C. Såthe, P. Sjöblom, S. Urpelainen
    MAX-lab, Lund, Sweden
 
  MAX IV Laboratory, a synchrotron facility in Lund, has selected TANGO as the control system framework for the entire facility. On the beamlines that are being built the Python-based SCADA (supervisory control and data acquisition) system Sardana will be used for experimental control. SPECIES, one out of eight new soft X-ray beamlines, is used as a test bench for evaluating the chosen standards. Sardana is used to control the energy setting of the PGM (plane grating monochromator) as well as to provide macros and other utilities for the user. Generic Taurus GUIs and a SVG-synoptic give the user a way to interact with the control system and display relevant information. The standardized graphical interfaces give a familiar look and feel across the entire facility. All motorized axes are controlled with the IcePAP motion controller. For the axes of the PGM, the IcePAP driver operates in hardware closed loop. Special care is taken in order to avoid slow and inaccurate movements of the PGM energy due to the non-linear relationship between the motors and the angular encoders.  
poster icon Poster MOPGF065 [0.875 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEM309 A Graphical Tool for Viewing and Interacting with a Control System 681
 
  • J. Forsberg, V.H. Hardion, D.P. Spruce
    MAX-lab, Lund, Sweden
 
  This paper presents a graphical interface for displaying status information and enabling user interaction with the Tango based control system for the MAX IV synchrotron. It focuses on bringing an intuitive view of the whole system, so that operators can quickly access the controls for any hardware based on its physical location. The view is structured into different layers that can be selectively shown, and various live updated information can be displayed in the form of e.g. colour or text. Panning and zooming is supported, as well as invoking commands. The interface is defined by an SVG drawing which can be edited without programming expertise. Since our system is based on modern web technologies, it can be run as a web service accessible by standard browsers, but it can also be integrated in GUI applications.  
slides icon Slides WEM309 [2.325 MB]  
poster icon Poster WEM309 [0.917 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF120 Timing System at MAX IV - Status and Development 984
 
  • J.J. Jamróz, J. Forsberg, V.H. Hardion, V. Martos, D.P. Spruce
    MAX-lab, Lund, Sweden
 
  Funding: MAX IV Laboratory
A MAX IV construction of two storage rings (SR1.5GeV and SR3GeV) and a short pulse facility (SPF) has been proceeding over last years and will be finished in the middle of 2016. In 2014, few timing procurements were successfully finalized according to the MAX IV requirements and the installation works are ongoing along with the TANGO control system integration.
THPPC103
 
poster icon Poster WEPGF120 [0.725 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)