Author: Cheblakov, P.B.
Paper Title Page
WEPGF093 CXv4, a Modular Control System 915
 
  • D. Bolkhovityanov, P.B. Cheblakov, F.A. Emanov
    BINP SB RAS, Novosibirsk, Russia
 
  CX control system is used at VEPP-5 and several other BINP facilities. CX version 4 is designed to provide more flexibility and enable interoperability with other control systems. In addition to device drivers, most of its components are implemented in a modular fashion, including data access at both client and server sides. The server itself is a library. This approach allows clients to access several different control systems simultaneously and natively (without any gateways). CXv4 servers are able to provide data access to clients from diverse CS architectures/protocols, subject to appropriate network module being loaded. The server library, coupled with "null link" client-server access module, allows to create standalone monolythic programs for specific small applications (such as test benches and device test screens/utilities) using the same ready code from large-scale control system but without its complexity. CXv4 design principles and solutions are discussed and first deployment results are presented.  
poster icon Poster WEPGF093 [0.752 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF095 Application of PyCDB for K-500 Beam Transfer Line 923
 
  • P.B. Cheblakov, S.E. Karnaev, O.A. Khudayberdieva
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: This work has been supported by Russian Science Foundation (project N 14-50-00080).
The new injection complex for VEPP-4 and VEPP-2000 e-p colliders is under construction at Budker Institute, Novosibirsk, Russia. The double-direction bipolar transfer line K-500 of 130 and 220 meters length respectively will provide the beam transportation from the injection complex to the colliders with a frequency of 1 Hz. The designed number of particles in the transferred beam is 2*1010 of electrons or positrons, the energy is 500 MeV. K-500 has dozens of types of magnets, power supplies and electronic devices. It is rather complicated task to store and manage information about such a number of types and instances of entities, especially to handle relations between them. This knowledge is critical for configuration of all aspects of control system. Therefore we have chosen PyCDB to handle this information and automate configuration data extraction for different purposes starting with reports and diagrams and ending with high-level applications and EPICS IOCs' configuration. This paper considers concepts of this approach and shows the PyCDB database sctructure designed for K-500 transfer line. An automatic configuration of IOCs is described as integration with EPICS.
 
poster icon Poster WEPGF095 [0.792 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)