

Development of a Front-end Data Acquisition System with a Camera Link FMC for High-bandwidth X-ray Imaging Detectors

<u>C. Saji</u>, T. Ohata, T. Sugimoto, R. Tanaka, M. Yamaga, JASRI/SPring-8, Japan T. Abe, T. Kudo, RIKEN SPring-8 Center, Japan

- Introduction
- Conceptual design
- Development of front-end DAQ
- Future plan
- Summary

Introduction

- SPring-8 site -

SPring. 8

X-ray Imaging experiment

X-ray Imaging experiment

Next generation

Detector:

Detector component: 40 sensors # of pixel for whole detector: 160M Repetition: 300 Hz Bandwidth: 20 Gbps/sensor

DAQ system:

Bandwidth: 20 Gbps/sensor

→Require new interface

supporting higher bandwidth

DAQ platform:

PC base \rightarrow Backplane base

Form-factor of board:

PC base \rightarrow Backplane base

X-ray Imaging experiment

PC base \rightarrow Backplane base

Form-factor of board:

PC base \rightarrow Backplane base

Conceptual design

Conceptual DAQ design

SPring. 8

Selection of appropriate techniques

- Changeable interface and DAQ board

- FMC (FPGA mezzanine card)
 - Separate I/O from FPGA carrier board

- High-bandwidth:

- FPGA w/ Multi-Gigabit-Transceiver (MGT) based board

Feasibility study

Hardware selection:

Based on COTS products → Reduce cost and time for development

FPGA board (evaluation board):

Platform:PCI expressPCI express:8 lanes (Gen 2)FPGA:Virtex6 w/ 6.6 Gbps transceiver

FPGA board

IO interface (FMC):

Physical layer			
1) QSFP+ (1ch : 4 lanes)			
2) SFP+ (4ch: 4 lanes)			
3) SFP+ w/10GbE PHY			

Protocol	Expected
Aurora	~20 Gbps
Aurora	~20 Gbps
XAUI	~10 Gbps

Measured 19.7 Gbps 19.7 Gbps 9.8 Gbps

- FMC has potential of ~ 20 Gbps bandwidth
- FMC is good for changing interfaces

FPGA board and FMC satisfy requirements of our conceptual design

Development of front-end DAQ system

- Camera Link system for SOPHIAS first phase -

Improvement of SOPHIAS detector

SOPHIAS (<u>Silicon-On-Insulator Ph</u>oton <u>Imaging Array Sensor</u>)

Prototype sensor

- Under development in SACLA
- Phase-by-phase upgrades are planning
- 1st phase operation will start in 2014

At final phase:

- Detector components up to ~40 sensors
- Bandwidth up to ~20 Gbps/sensor
- Sensor interface should be changed

Our DAQ concept was applied to FE-DAQ for SOPHIAS 1st phase as the first application.

	SOPHIAS (1st)	SOPHIAS (Final)	
Sensor			
No. of pixels	~2M	~2M	
Depth (bit)	16	16~32	
Frame rate	60 Hz	<300 Hz	
Release	2014FY	TBD	
Experimental conditions			
Frame rate	30 Hz	TBD	
Data size for one frame	~16 MB	TBD	
Detector components	Dual sensors	~40 sensors	
FE DAQ			
Required bandwidth	3.7 Gbps/sensor	~20 Gbps/sensor	
Sensor interface	Camera Link full configuration	(should be changed)	
Computer interface	PCI express gen2 \times 8	TBD	

SOPHIAS:

Output Interface: Camera Link full-configuration

Actual bandwidth: 3.7 Gbps

FPGA board: Form: PCI express

Input Interface: Camera Link FMC

Output Interface: PCI express gen2x8

Function:

- Data transmission
- Protocol conversion
- Adjust transmission timing and throughput

- Only sensor interface of Camera Link FMC and its logic were newly developed

- Re-used existing some boards and logic

Computing system:

OS: Linux

Camera Link Interface FMC

- New development in-house
- FMC (VITA 57) standard
- Camera Link standard ver2.0

- -General purpose I/O (GPIO):
 - \rightarrow external trigger signal etc..
- Followed FMC and Camera Link standards
 → can use for any FMC carrier boards and cameras

Checked connection with some devices

FPGA boards:

Virtex6 based (Tokyo electron device) Kintex7 based (Xilinx)

Commercial cameras:

Adimec OPAL 2000 (base-configuration) Pco.edge Scientific CMOS (max 6.8 Gbps)

Evaluation

- Evaluation was applied to connect with SOPHIAS readout module

Checked items:

- Data acquisition:
 - Error check by bit-by-bit comparison
- Sensor configuration:
 - Using Camera Link serial command function
- <u>Stability:</u>
 - 12 hour continuous operation

w/ 16MB/frame 35Hz

- \rightarrow ~ 4.5 Gbps bandwidth
- \rightarrow Acquired 1.5 million events
- \rightarrow No data error, no data lost

Evaluation

- Evaluation was applied to connect with SOPHIAS readout module

Checked items:

- Data acquisition:
 - Error check by bit-by-bit comparison
- Sensor configuration:
 - Using Camera Link serial command function
- <u>Stability:</u>
 - 12 hour continuous operation

w/ 16MB/frame 35Hz

- \rightarrow ~ 4.5 Gbps bandwidth
- \rightarrow Acquired 1.5 million events
- \rightarrow No data error, no data lost

 Front-end DAQ system is ready for 1st phase of SOPHIAS detector

- Our DAQ concept successfully applied

Future Plan (1)

For SOPHIAS final phase:

-Detector components: Up to 40 sensors PC based platform → Backplane based platform (e.g. xTCA)

Apply DAQ concept to scalable upgrade of SOPHIAS:

Future Plan (2)

For SOPHIAS final phase:

-Higher bandwidth requirement (~20 Gbps)

- We already have experience of AURORA and XAUI protocol w/ FMC

AURORA: 19.7 Gbps

- = 6.25 (Gbps) x 4 (lanes bonding) x 0.8 (8b/10b encoding)
- More bandwidth is possible
 - \rightarrow Higher transceiver/more lanes bonding
- XAUI: 9.8 Gbps

- Good physical layer for 10GbE implementation w/ low cost FPGA

- For sensor communication

- When exceeds Camera Link bandwidth (6.8 Gbps)
 - New interface can be applied by FMC
 - AURORA and XAUI is ready
- More than 10 Gbps
 - AURORA is ready
- For computer platform communication:
 - HW based 10 GbE implementation will be started

Summary

- We have developed a front-end DAQ platform of X-ray imaging detectors for synchrotron radiation experiments.

- Selected technical components were evaluated to satisfy flexible interface change with high-bandwidth.

- For one of applications, the front-end DAQ system with Camera Link interface was developed for 1st phase of SOPHIAS detector, and well performed ~4.5 Gbps stable data acquisition.

-The developed Camera Link interface was designed to be applied to various applications.

-In the future detector upgrade, the front-end DAQ should smoothly follow the scale-up of the detector component. The front-end DAQ system will shift to a suitable platform/interface and achieve further high-bandwidth.