ARM BASED EMBEDDED EPICS CONTROLLER FOR BEAM DIAGNOSTICS IN CYCLOTRONS AT VECC

Shantonu Sahoo Variable Energy Cyclotron Centre(VECC), Kolkata, India

Variable Energy Cyclotron Centre, Kolkata

K-130 Room Temp. Cyclotron

- Pole Diameter
- Average Field
- Conductor
- Ion Source
- Beam Energy

:	224	cm	
		~	

: 17.1 kG

004

- : NbTi in Cu
 - : PIG & ECR
 - : 25-130 MeV

(Proton, Alpha and Heavy Ions)

K-500 Superconducting Cyclotron

- Pole Diameter : 142 cm
- Average Field : 49 kG
- Conductor : NbTi in Cu
- Ion Source : ECR
- Beam Energy : 80MeV/nucl

VECC Kolkata, India ICALEPCS 2013 at San Francisco

Subsystems :

- High Current Power Supplies
 - Main Magnet, Trim Coils, Beam-line magnets
- Radio Frequency System
 - Freq. Range : 9-28 MHz (for SCC), 6-15 MHz (for VEC)
- Vacuum System
 - Working Pressure : 10⁻⁷ Torr
- ECR Ion Source
 - External ECR, Axial injection
- Beam Diagnostic System
 - All the beam regions

Beam Diagnostics : Components

- Axial injection line
 - Faraday cups, X-Y Slits etc.
- Acceleration region
 - Main probe, Delta probe and Beam viewer (Borescope) probe
- Extraction region
 - Magnetic channels, Deflectors position, Viewer probe etc.
- External beam line
 - Faraday cups, X-Y Slits, Beam viewers etc.

EPICS Control Architecture

Faraday

-Cup

(in Beam Diagnostics Control System)

Beam Viewer

PERTURE: 30

ERTURE: 30

GUI at console

X-Y Slit

Control LAN

0

Distributed Control System

Main Probe

- Modular Beam Diagnostics Crate
- EPICS IOC on Central Communication Controller Card.

VECC Kolkata, India ICALEPCS 2013 at San Francisco

C-DEE

Beam Diagnostics Crate

• Pluggable modules :

- 1. ARM based Master controller card
- 2. Stepper Motor module
- 3. X-Y Slit module
- 4. Encoder Read-Out Module
- 5. Relay Module
- 6. I/O Module
- RS-232 communication with Hardware Modules
- Maximum of 8 pluggable modules can be placed in the crate other than master controller
- Dedicated Serial Line from Master Controller to each Hardware Module

VECC Kolkata, India ICALEPCS 2013 at San Francisco

Why Embedded Systems Instead of Traditional PC ??

- Cost effective
- Small Size
- Flexibility of designing EPICS embedded control hardware or instrumentation
- Easy Plug-in for customization
- Easy Maintainability

Why ARM (Advanced RISC Machine) ??

- Industry standard embedded microprocessor architecture. (95% of the smartphone mobile industry)
- Low power consumption
- Smaller Footprint
- Low Cost
- Soft IP cores
- Peripheral Integration
- License to multiple manufacturers Obsolescence mitigation
- Compatibility with Linux OS and GNU gcc compiler support

ARM processor

- 32 bit RISC processor.
- High Code density.
- Hardware Debug Technology.
- Load store architecture.
- 7 CPU Modes : Six privileged modes and one non-privileged mode.
- Inline barrel shifter.
- Thumb 16 bit instruction set.
- Conditional execution : An instruction is only executed when a specific condition has been satisfied.
- 3 to 8 stage pipelining architecture

TS7500 Board: Heart of diagnostic instruments

Item		TS-7500
CPU		ARM922T (250Mhz), From Cavium Natworks
OS		Linux 2.6.24 (Debian)
Memory	DDR RAM	64 MB
	SRAM	512 KB
	Flash ROM	4 MB
	External SD Card	2 GB
Peripherals	DIO	33 Pin DIO
	USB 2.0	2 (Host) and 1 (Slave)
	Ethernet	10/100 Mbit
	UART	1 TTL serial console port
		and 8 XUART TTL serial
_		ports.
Power	Low Power	400mA @ 5V

EPICS Performance Analysis on TS-7500

- for Beam diagnostics
- Preparation:

Three hardware modules for beam-viewer, faraday-cup and slit-control require

- 4 asynchronous analog input (ai) with 10 Hz scan rate with real hardware
- 5 asynchronous analog output (ao) with 10 Hz scan rate with real hardware
- 3. 16 calculation record (calc) with 10 Hz scan rate

EPICS Performance Analysis on TS-7500 for Beam diagnostics

Preparation:

- Device driver is written using asyn module
- SYSSTAT tool is loaded in TS-7500 and run
- IOC is loaded in TS-7500 and run

Objective is to identify CPU load for record processing and asynchronous callback routine

EPICS Performance Analysis on TS-7500

for Beam diagnostics

VECC Kolkata, India ICALEPCS 2013 at San Francisco

EPICS Performance Analysis on TS-7500 for Beam diagnostics

As the rest of the CPU time can be utilized for CA requests, maximum get() and put() possible on TS-7500 is measured

Preparation:

- 1. CaServer Application is run on TS-7500.
- 2. Modified ca-time tool is used from an x-86 client connected in LAN.
- 3. Server CPU Load (on TS7500) is calculated for individual Channel Access event: CAget ,CAput , CAconnect and Cafree.
- 4. Results are studied with increasing number of client requests

EPICS Performance Analysis on TS-7500

% utilization of CPU vs No. of PVs

- CPU utilization exceeds 80% for 5000 Channel Get requests from client.
- As the number of PVs in our Beam diagnostics system is much less, it will not overburden the CPU.
 VECC Kolkata,India ICALEPCS 2013 at San Francisco

Details about developing ARM based Embedded controller:

- 1. Device-driver is developed using asyn
- 2. The serial communication protocol for the module is

- 3. All required EPICS record sets for beam diagnostics reside locally
- 4. Deadlock conditions, if any, are checked and avoided in db

Following tasks are performed after the above steps

- Porting EPICS IOC on ARM board
- Developing a GUI for the Operator Interface

Porting of EPICS on ARM processor

1. Installing Cross Compiler toolchain

arm-linux-gcc toolchain available from GNU

2. Target configuration

CROSS_COMPILER_TARGET_ARCHS =linux-arm GNU_DIR = /local/anj/cross-arm/gcc-3.4.5-glibc-2.3.6/arm-linux

- 3. Build EPICS base
- 4. Copy to Target Board (TS7500)

Hyperterminal window showing the serial console terminal of ARM board with EPICS running on it.

GUI for Operator Interface

- Microsoft Visual Basic (VB) is chosen as the OPI developmental platform.
- Indeginiously developed CA embedded Active-X components e.g. CA Text, CA Image, CA Setpoint and CA button are used.
- Easy Channel Access (EZCA) library used for CA functions .
- Advantages:
 - Easy configuration i.e. pvName and init() call
 - Drag & drop type reusable component
 - Rich GUI library
 - Less complicated coding style
 - Expertise in configuration of X-server (e.g. *Exceed*, *Xming*, Cygwin/*X*) not required

<u>GUI for interfacing Slit Controller used in Beam</u> <u>Diagnostics application developed using VB</u>

VECC Kolkata, India ICALEPCS 2013 at San Francisco

Experience during actual operation

- The SD-card of the board was frequently damaged
- Maintenance became a challenge
- The reason was identified and found radiation is the possible reason
- Field cables are extended and the instrument were kept far away
- Problems appeared to be solved, however, initiative is being undertaken to replace the SD card and make the embedded system a diskless device with remote disks.

Conclusion

- In this project we have successfully ported EPICS IOC on ARM9 processor.
- EPICS based ARM controller card has been designed and tested for beam diagnostics subsystem of Cyclotron at VECC.
- CPU load to run EPICS on TS-7500 was performed and found satisfactory

Future scope:

- Instead of ARM Single Board Computer we have also targeted FPGA with soft / hard embedded processor cores.
- This will integrate the IOC and digital control hardware within a single FPGA, thus reducing the overall hardware complexities of field devices.
- Xilinx FPGA supports MicroBlaze soft core processor and Dual Core ARM Cortex A9 hard processor.

Acknowledgement

- Niraj Chadda
- Tanushyam Bhattacharjee
- Anindya Roy
- Rajendra Bhole
- Sarbajit Pal
- Amitava Roy
- Debranjan Sarkar

