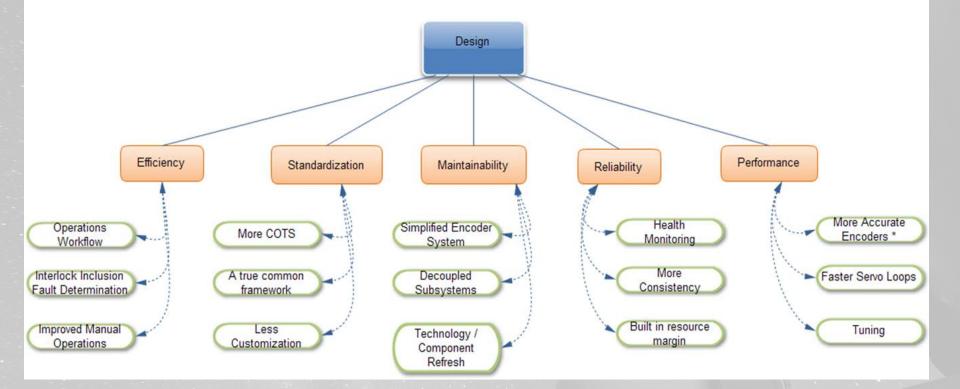
Challenges and Solutions of Upgrading a Running System [THC0BB05]

K.Tsubota, J.Johnson, J.Mader W.M. Keck Observatory



Overview

- MOCOAAB05: Keck Telescope Control System Upgrade Project Status
 - Major telescope control system upgrade
 - Knowledge and technology refresh to
 - Improve efficiency, maintainability, reliability, standardization, and address obsolescence
 - Changes include hardware interface cards, telescope encoders, controllers, servers, and software
- Biggest challenge will be during integration and commissioning
 - Minimize telescope downtime
 - Ensure fail-safe reversion

K OBSERVATORY

Design Goals

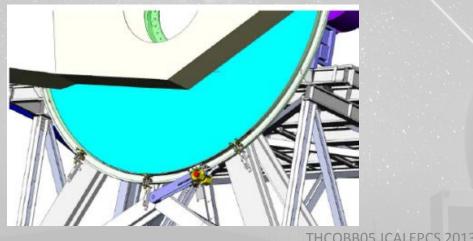
THCOBB05 ICALEPCS 2013

Switchover Criteria

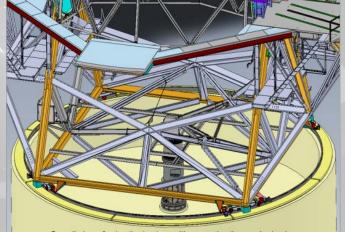
- Ability to quickly and reliably switch between existing and new systems
- Minimal telescope down time
- Allow subsystem by subsystem upgrades
- Backwards compatibility
- No "point of no return"

Solutions Identified

- Analysing the areas impacted by the upgrade resulted in a multiple solution approach
 - Parallel operations
 - Signal splitting
 - Switching signals
 - Modularity
 - Software backwards compatible

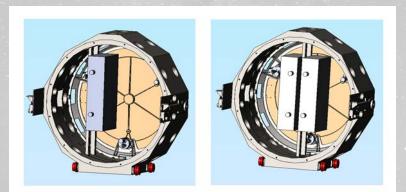


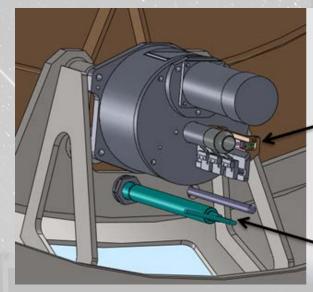
Parallel Solution


- Allows work on the new system without impacting the existing system
- Not necessary to revert back to an operational system
- The preferred approach
- Identified key areas for parallelism
 - Telescope azimuth and elevation encoder systems
 - Secondary controller
 - Pointing software subsystem

Parallel Solution: Telescope Encoders

- Involved finding a suitable place to install the new system without interfering with the existing system
- Elevation prototype implemented
- Azimuth prototype just starting


V. M. KECK OBSERVATORY


Overall view of azimuth structure with new azimuth encoder in place

Parallel Solution: Secondary

- Adding additional electronics cabinet side by side
 - Requires cable switching for drives and flex I/O
- Also adding new position encoder and home switch in parallel

. KECK OBSERVATORY

Home switch

Position encoder

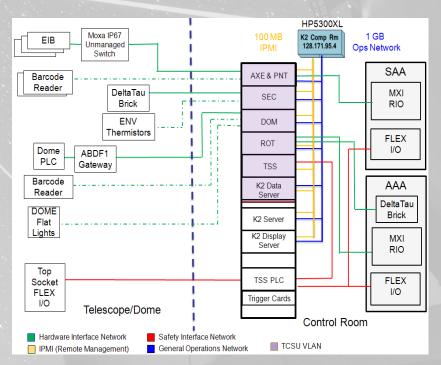
Parallel Solution: Pointing Software

- Pure software solution
- Deployed on a new server
- Running in parallel with operational system
 - Uses different name prefix ID
 - Reads actual operational inputs to calculate outputs
 - Logs inputs and outputs to compare with operational system

Signal Splitting Solution

- Simple tapping/teeing off of a signal so both systems receive them simultaneously
- Requires careful cable construction and installation
- About 1/3 of all telescope and rotator signals are split using this method
- Signals include current monitoring, faults indicators, limits switches, control switches, and status signals

Signal Switching Solution


- Physical switch box to route signals to one or the other system, not both
- Implemented as a simple relay solution
- Operates off a single control line that will switch all connected field I/O
- Switching will not be a casual over and back operation
 - Requires some downtime

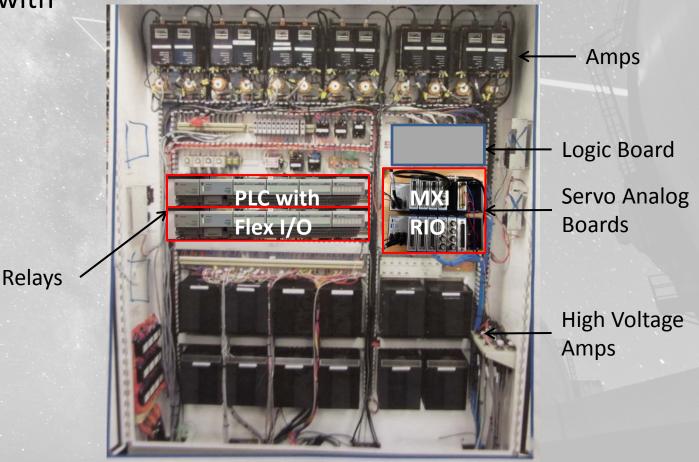
Modular Solution

- Functional and physical split of systems
- Migrated from 2 VME crates to 5 Linux servers, one for each hardware subsystem
- Additional Linux servers for high capacity archiving, logging, alarming, and supervisory control

N. M. KECK OBSERVATORY

Modular Solution: Field I/O

- Subsystem controller and field I/O hardware attempt to share common implementation
 - Linux server supports PCI-e bus
 - Preferred solution is Ethernet based hardware
 - Delta Tau Brick, Heidenhain EIB, Allen Bradley Control Logix PLC with Flex I/O


				External Hardware								
	Controller Hardware			New					Existing			
		RocketPort	NI	NI	Delta Tau	Heidenhain	AB Control	AB	AB	Daytronics	Accusort	Keithley
Subsystem	BC635	Express	MXI I/F	RIO	Brick	EIB	Logix PLC	Flex I/O	PLC-2/5	Thermistors	Barcode	Temp Sensors
AXE/PNT	Х	х	Х	Х		х		Х			Х	
DOM	Х	х							Х		Х	х
ROT	Х		Х	Х	Х			Х				
SEC	Х	х			Х			Х		Х		
TSS	Х						Х					

Modular Solution: Servo Amplifier Assembly

 Modular with switching

W. M. KECK OBSERVATORY

Software Backwards Compatible

- Maintaining backwards compatibility with the existing software control system was a key design goal
- Decided to stay with EPICS and upgrade to newer OSI versions and newer EPICS tools
- **EPICS** Supports parallel solution model
 - Custom Keck Transport Layer (KTL) for high level interfacing and operational tools (maps logical names to EPICS PVs) remains 100% reusable
 - Easily allows for subsystem by subsystem replacement
 - No existing high level scripts or tools need to be updated
 - Newer tools can be released in parallel

Conclusions

- It can be done!
- Integration needs to be thought through and designed into the upgrade from the beginning
 - But you should still expect some complications
- Applying these solutions allows
 - Standalone testing with minimal interference
 - On-sky testing without affecting operations
 - Less risk to operations

