
MeerKAT Control-and-Monitoring
Design Concepts & Status

Lize van den Heever
MeerKAT CAM: Technical Lead

ICALEPCS 2013
(MOCOAAB06)

Introducing the MeerKAT Project

2

• MeerKAT is a 64-dish Radio Telescope:
o Being built in the Karoo in the Northern Cape of South Africa
o Is a Precursor for the SKA
o Has a 7-dish engineering prototype, currently in operation, called KAT-7

• MeerKAT’s vision:

o use Offset Gregorian antennas in a radio telescope array combined
with optimized receiver technology in order to achieve superior imaging
and maximum sensitivity,

o be the most sensitive instrument in the world in L-band,
o be an instrument that will be considered the benchmark for

performance and reliability by the scientific community at large, and
o be a true precursor for the SKA that will be integrated into the SKA-MID

dish array.

MeerKAT Project Progress

3

• KAT-7, a 7-dish engineering prototype for MeerKAT
o is being operated 24x7
o already producing exciting science and first paper published

• MeerKAT project
o commissioning of first MeerKAT antenna will start Mar 2014
o 4 antennas on site by Dec 2014
o all 64 antennas installed on site by Dec 2016
o with 32 antennas fully commissioned by Dec 2016

• MeerKAT CAM (Control-And-Monitoring) subsystem
o MeerKAT CAM Preliminary Design Review completed in July 2013

 with an international panel of domain experts
o KAT-7 CAM subsystem in place
o CAM team currently expanding that for the MeerKAT Receptor Test

System (first 4 receptors) to be ready by Feb 2014

Karoo
Radio
Astronomy
Reserve

4

KAT-7 in the Karoo

5

MeerKAT

KAT-7

Operational
KAT-7

6

Evolution of MeerKAT CAM

7

• SKA South Africa:
o funded by the NRF (National Research Foundation)
o started in 2004 with an XDM project
o followed by the Fringe Finder project (the first 2 KAT-7 antennas),

completed by end 2009
o full KAT-7 project followed and is fully operational 24x7 (7 antennas)
o now busy with the MeerKAT project (64 antennas)
o has a culture of:

- learning, improving, enhancing
- keeping it simple, until proven to be insufficient
- using open source and creative solutions

• MeerKAT CAM Subsystem
o Many people involved over the course of these projects
o Provided ideas for improvements and enhancements of CAM
o MeerKAT CAM design is a result from all these efforts, not clean sheet
o Most recently a concerted design effort to fully document

and formally review the MeerKAT CAM design
o Culminated in MeerKAT CAM PDR in July 2014
o Always view towards scalability to the size of SKA Phase 1 (250 dishes)

MeerKAT Key Design Concepts

8

1. KATCP for standardised communication
2. Standardised Central logging
3. Proxy Layer and KATCP Device Translators
4. Fully Simulated System
5. Adaptive System based on Interrogation and Discovery
6. Flexible Central System Configuration
7. Homogenous Node Management
8. Soft real-time control with Ethernet as a field bus
9. Hierarchical monitoring and Distributed archiving

Presenter
Presentation Notes
KATCP for standardised communicationStandardised Central loggingProxy Layer and KATCP Device TranslatorsFully Simulated SystemAdaptive System based on Interrogation and DiscoveryFlexible Central System ConfigurationHomogenous Node ManagementSoft real-time control with Ethernet as a field busHierarchical and Distributed monitoring

Presenter
Presentation Notes
KATCP for standardised communicationStandardised Central loggingProxy Layer and KATCP Device TranslatorsFully Simulated SystemAdaptive System based on Interrogation and DiscoveryFlexible Central System ConfigurationHomogenous Node ManagementSoft real-time control with Ethernet as a field busHierarchical and Distributed monitoring

MeerKAT Key Design Concepts

10

#1. Standardized communications, reporting and logging layer
#2. Discovery of monitoring points and commands on the interface
#3. Adaptive system design adjusts in run-time based on discovery

1. KATCP for standardised communication

- KATCP is a text based, human-readable protocol build on TCP/IP
- Provides discovery of monitoring points/sensors and requests/commands
- Allows different sensor strategies (sampling rates) per client, supporting

different users to configure different update rates
- Sensor update is a timestamp, status, value combination
- Includes standardised logging and failure reporting
- Publicly release on PyPi

- KATCP is specified as the CAM interface for all subcontracted and internal

hardware devices and subsystems
- Also used for internal communication between CAM components

Presenter
Presentation Notes
Underlying the CAM concept of KAT-7 and MeerKAT is a standardized communications, reporting, controlling and logging protocol, the KAT communications protocol (KATCP). The KATCP protocol is a text based, human-readable protocol build on TCP/IP and supports flexible, run-time configuration by providing interrogation of sensors and requests/commands; these are used by the clients to discover the configuration of devices dynamically. The KATCP protocol is specified as the CAM interface for all subcontracted and internal hardware devices and subsystems, as well as internal communication between CAM components. In cases where the subcontractor cannot deliver a KATCP interface, a Device Translator is implemented by the CAM team to translate its specific protocol (like modbus, OPC, web-services, Ganglia metrics) to KATCP.A key concept underlying the CAM implementation is the support provided in the KATCP protocol for different sensor strategies (sampling rates) per client. This enables each component to request sensor updates at the rate required by that component, e.g. the kataware component uses a different sampling rate to generate alarms than the katmonitor components use to archive historical sensor data .Another key concept in KATCP is standardised logging. This allows devices that do not have access to storage to forward logs over their KATCP interface to the client. The log levels are standardized and the kind of information expected at each level is prescribed. The level of the KATCP logs to send over the interface can be set through the KATCP interface.In summary:•	KATCP supports dynamic discovery through interrogation of monitoring points (KATCP sensors) and commands (KATCP requests)•	Interrogation of KATCP sensors provide details such as a description of the monitoring point, unit of measure, nominal, warning and error ranges, and absolute min/max values on sensors.•	Interrogation of KATCP requests includes help on parameters and usage examples.•	KATCP defines sensor sampling to always be a value/status combination where the status can be one of a defined set of status values e.g. nominal, warning, error, failure, inactive or unreachable (each of which is well-defined). Each sensor update is also time-stamped to indicate the time at which the sensor value was refreshed by the device.•	Interrogation also provides build state and version information.•	The KATCP guidelines defines standardized logging levels and logging format.•	KATCP is publicly released as a Python package on PyPi.•	KATCP devices support multiple connections •	KATCP sensors are exposed to all clients, but KATCP supports flexible reporting strategies per client for all sensors. Each client can define its own update strategy for sensors on a KATCP interface; e.g. periodic with a time period, event (on change), periodic but limited to a maximum update rate, etc.KATCP is used for all CAM component, subsystem and hardware interfacing in MeerKAT. Most Inter-process communications internal to the CAM subsystem is also implemented through KATCP interfaces.

MeerKAT Key Design Concept #2

11

2. Standardised Central logging
- KATCP guidelines specifies standardized logging and failure logging for

devices/subsystems
- This includes logging levels, logging format, type of information expected at

each level
- CAM proxy layer exposes device logs for central logging
- All logs from proxies and CAM components are stored centrally
- Level of KATCP logging for each device is configurable via KATCP interface
- Ensures:

* a consistent mechanism and formatting for system-wide logs
* a central store of system logs to support fault finding and engineering
 tests

- CAM provides a web interface for viewing on-line system logs,
filtered by source and log levels by the user.

Presenter
Presentation Notes
Standardised Central loggingThe KATCP guidelines also specifies standardized logging for devices/subsystems. The CAM proxy layer, gathers and stores all KATCP logs centrally. The level of logging exposed on each KATCP interface is configurable via KATCP request. This provides a consistent mechanism and formatting for system-wide logs and a central store of system logs to support fault finding and engineering tests. The CAM provides a web interface for viewing on-line system logs, which allows the log sources to be filtered by source and level by the user.

MeerKAT Key Design Concept #3

12

3. Proxy Layer and KATCP Device Translators
- Protects hardware devices and MeerKAT subsystems from direct access
- All engineering/support/system components/tools connect via the proxy

layer and not directly to hardware devices/subsystems.
- Proxy may implement special configuration/control for a device (e.g. the

Receptor proxy implements pointing corrections for antenna pointing, and
the Data proxy implements delay calculations and gain corrections for the
Correlator).

- Proxy layer also gathers the KATCP logs from devices for central logging
- Proxy layer provides rolled-up reporting across all devices it manage

Device Translators:
- MeerKAT specified KATCP interface and KATCP simulators for all

subcontractors and subsystems
- Device Translators convert specific protocols (like modbus, OPC, web-

services, Ganglia metrics) to KATCP, where required
- Allows for the CAM team to develop against a fully Simulated system
- CAM system can be functionally exercised in a fully simulated environment
- Used for CAM functional qualification and operator training

Presenter
Presentation Notes
Proxy Layer and KATCP Device TranslatorsAll hardware devices and MeerKAT subsystems are protected from direct access through a layer of proxies implemented by the CAM subsystem. All engineering/support/system components/tools connect via the proxy layer and not directly to hardware devices/subsystems. A proxy may expose one or more devices/subsystems, and the proxy layer provides a consistent level of aggregate monitoring information for all its hardware devices/subsystems. A proxy may implement special configuration/control for a device (e.g. the Receptor proxy implements pointing corrections for antenna pointing, and the Data proxy implements delay calculations and gain corrections for the Correlator Beamformer (CBF)). The proxy layer also gathers the KATCP logs from devices and passes it on as device-logs through Python logging to a centralized logger that stores and displays all logs centrally. With the Device Translators and specification of KATCP interface for all subcontractors and subsystems, the complete instrument is managed, controlled, monitored and logged in a standard way, and exposed to the rest of the system through the proxy layer. This allow for the CAM team to develop a Simulator that simulates the KATCP interface and device behavior for each device/subsystem, so that the complete CAM system can be functionally exercised and qualified in a fully simulated environment

MeerKAT Key Design Concept #4

13

4. Adaptive System based on Interrogation/Discovery
- KATCP supports discovery of sensors and commands, down to device level
- By design CAM exploits this in-time discovery on all levels and extends that

by adapting to the discovered interface in real-time.
- Newly discovered sensors are automatically included throughout the CAM

system (without a single change in configuration or lines of code):
 * sampled and added to archiving
 * included in rolled-up reporting, including generic alarms
 * automatically available when plotting updates or extracting history
 * added to health and status displays & views through rolled-up sensors

- Newly discovered commands are automatically included in CAM low level
device control, available to engineers and expert users immediately

- Even adding a new CAM component to be monitored needs nothing more
than defining the component in the configuration

- Adding a new simple device to a proxy needs nothing more than defining the
device name and location in the configuration

- This adaptive design based on discovery allows for seamless integration as
new versions of controllers/hardware are rolled out

Presenter
Presentation Notes
Adaptive System based on Interrogation/DiscoveryOne of the most powerful features of the KATCP protocol is its support to interrogate KATCP servers for monitoring points (KATCP sensors) and commands (KATCP requests). Interrogation of sensors and requests, down to device level, through KATCP, supports fluid run-time detection of system configuration; e.g. when a new monitoring point is added to any level of the system (including a hardware device), the rest of the CAM automatically discovers the change on-line on connections, and includes it in the monitor store and in its interfaces. The CAM by design builds on this in-time interrogation and extends that by adapting to the discovered interface in real-time. All detected sensors are automatically sampled and monitored, included in the archive, aggregate reporting, and even health and status displays through rolled up sensors, without the need for any configuration. Sensor displays and archive displays automatically adjust to present the sensors detected during interrogation without having to manually change the displays in any way. CAM also exposes all discovered requests in its low level device control. This allows for seamless integration as new versions of controllers/hardware are rolled out with different sensors and requests.The CAM’s adaptability to the underlying system changes ensures flexibility during the construction phase where new antennas are constructed and rolled out periodically. This has proven extremely useful during testing, integration and commissioning of KAT-7. Even the CAM health and status operator displays have been designed to automatically adjust to report on the receptors found in the system configuration, without a need to recompile or change the display configuration when a receptor is added or removed. Likewise the CAM sensor graph display that is used to extract archived monitoring data has been designed to automatically present all discovered sensors without the need to recompile or reconfigure any CAM components.

MeerKAT Key Design Concept #5 & #6

14

5. Fully Simulated System
- Fully simulated system up to the KATCP interface of each device &

subsystem
- Allows full software development without dependency on any hardware
- Simulators implement full KATCP interface and representative behaviour

6. Flexible Central System Configuration
- Powerful and flexible system configuration in human readable text files
- Supports integration and incremental rollout of receptors
- Can run any combination of real and simulated devices as CAM “sites”
- Includes identification of servers and virtual notes participating in the “site”
- Includes configurable health displays, aggregate sensors with user defined

programmatic rules, sampling strategies for monitoring and archiving and
alarm configurations and actions.

Presenter
Presentation Notes
Fully Simulated SystemThe CAM subsystem implements a fully simulated system up to the KATCP interface of each hardware device and subsystem. It is possible to run a configuration including only simulated devices, or any combination of real and simulated devices combined. This allows full software development, unit testing and integration testing, including CAM subsystem qualification testing without dependency on the availability of hardware. Although the full KATCP interface for each device is implemented in the simulators, the actual functionality of all the hardware components are not fully implemented; each simulator implements behaviour to the level required by CAM integration testing. However, antenna pointing and modes are simulated with realistic timing, and a representative simulation of the data output of the correlator are implemented. While the CAM team is responsible for developing most of the simulators, some of these device simulators are contractually delivered by the subsystem contractor to ensure that, given their knowledge of the device, the behaviour of the device is reflected with sufficient accuracy by the device simulator. Having a fully simulated system available is critical to CAM Qualification Testing and has proven to be one of the most valuable lessons learnt very early in SKA SA. Even though it takes time to develop the simulators and keep them aligned with changing interfaces, the CAM Team will not hesitate one moment if asked whether to do this or not.Flexible Central System ConfigurationThe CAM provides a powerful and flexible system configuration in human readable text files to support integration and incremental rollout of receptors. It caters for any combination of real and simulated devices as CAM “sites” and is templated using Genshi for easy setup and maintenance. Each CAM site has a single central active configuration, deployed only on the headnode, which is served to all CAM nodes in the CAM site by a katconfserver component running on headnode.The system configuration also includes configurable health displays, aggregate sensors with user defined programmatic rules, sampling strategies for monitoring and archiving and alarm configurations and actions. Soft Real-time Control with Ethernet as a Field

MeerKAT Key Design Concept #7

15

7. Homogenous Node Management
- CAM implements homogeneous node management across all nodes (VMs)
- A single headnode acts as system controller
- Headnode coordinates the system from central configuration
- Same suite of software is deployed on all nodes
- Each node (including headnode) starts up with only a katnodemanager

service
- Each katnodemanager waits for headnode to register the subset of CAM

processes to run on that node and for launch instructions

Allows for seamless scaling of servers when performance demands it
- Extremely easy to add new servers that host more virtual nodes
- Only need to update the central configuration to identify new servers with

new virutal nodes and distribute the processes to run on each virtual node
- Then restart, no code changes required

Presenter
Presentation Notes
Homogenous Node ManagementThe CAM subsystem ensures homogeneous node management (the term “node” is used for a virtualized container running a configured set of CAM processes).CAM nodes are virtualised across various physical servers (CAM hosts). The same suite of software is deployed on each CAM node.A single headnode is identified as the system controller for the set of nodes and has the only copy of the active configuration that is served from the headnode to all CAM nodes. Each CAM node (including the headnode) initially runs only a katnodemanager service that waits for the system controller to register the subset of CAM processes to run on that node (as retrieved from the active configuration on the headnode).	 This allows for seamless scaling when performance demands it as it is extremely easy to add new servers that host more nodes and distribute the processes amongst the new nodes. The only action required is updating the active configuration to identify the new nodes and the processes to run at each, and then restarting the system.

MeerKAT Key Design Concept #8

16

8. Soft real-time control with Ethernet as a field bus
- implies that there are no tight critical control loops in the MeerKAT CAM

- where necessary, real-time control is decentralized to devices

- CAM subsystem issues commands to devices with a specific timestamp

Presenter
Presentation Notes
Soft real-time control with Ethernet as a field busSoft real-time implies that there will be no time critical control loops in the MeerKAT CAM software and, where necessary, real-time control is decentralized and pushed down to devices. The CAM subsystem issues commands to devices with a specific timestamp; the exact timing is handled by the device in question. Synchronised execution/scheduling is implemented by syncing time from a central Timing and Frequency Reference across all devices and specifying the same start time, which is then independently handled by each node.

MeerKAT Key Design Concept #9

17

9. Hierarchical monitoring
- Based on standardisation and commonality defined in KATCP guidelines
- Includes standardised failure reporting and failure logging, logging,
- Includes standardised device status & health reporting, and rolled-up

reporting on device level
- Each proxy implements rolled up reporting across devices they manage
- Each node manager implements rolled-up reporting for all CAM processes

it manages

Standardisation and consistency simplifies the CAM design:
- Provide single points of monitoring to roll-up in hierarchical health reporting,

which can be discovered through naming conventions
- Drill down only required for fault finding or when interested in lower level

information
- Rolled-up reporting, allows high-level monitoring with hierarchical drill down

when required.

Presenter
Presentation Notes
For MeerKAT, the KATCP guidelines have been extended to include consistent failure reporting on each device through a proper FMECA process, as well as standardised device-status reporting for health monitoring. By dictating that high level failure sensors and health monitoring sensors are to be implemented by each KATCP device or subsystem, only a relatively small set of standard health and failure sensors have to be routinely managed and monitored, improving scalability. This simplifies the design of e.g. the health-monitoring GUI display, since all devices report consistently; the lower level device sensors (e.g. individual temperature sensors) are also available to the system, allowing hierarchical drill down when more detailed information is required. Furthermore, it gives the parties with the best knowledge of device behaviour and failure modes and their impact on the overall telescope system (the KATCP device vendors and SE) the capability to incorporate this knowledge directly into the CAM subsystem.Each proxy also rolls up health information for communication, sensors and functional status through aggregate sensors that indicate the worst status of all communications (comms.ok) and the worst status of all sensors (sensors.ok). Each KATCP device reports an evaluation by the unit itself of whether it is still functioning correctly or not, notwithstanding the presence of warnings or errors on some sensors (device_status as ok, degraded or fail). These provide single points of monitoring to roll up in hierarchical health reporting and availability and a single mechanism to display sensors for fault finding; drill down and interrogation of lower levels are only required when errors are reported. Failure detection sensors are further supported by standardised failure detection logging described in the KATCP guidelines. Similar to proxies that consolidate reporting across all the devices they control, each node manager consolidates reporting across all CAM processes it manages. Standard sensors are exposed for each process (e.g. process_ok, process_running) in the same way as the aggregate reporting is done on the proxy level (e.g. sensors.ok, comms.ok and all.ok), and is thus reflected on the health display. Distributed monitoring is implemented by running a local katmonitor component on each CAM node that monitors and archives the sensors of all the CAM proxies and other CAM components running on that node. The katmonitor instance writes its monitoring points to a central katstore archive server through network file system mounts routed through the bulk network, avoiding network traffic bottlenecks. Any new nodes added to the system are automatically included in the system monitoring and archiving by simply adding the node to the configuration and running an instance of katmonitor on that nod. The new monitoring points are automatically included into the rest of the system through interrogation and the adaptive design of the CAM subsystem.

MeerKAT Key Design Concept #10

18

10.Distributed archiving

- A local katmonitor component on each virtual CAM node

- Gathers and archives the sensors of all components running on that node

- Each katmonitor writes its sensor updates to a central katstore archive
through network file system mounts routed through the bulk network,
avoiding network traffic bottlenecks

- New nodes are automatically included in the system monitoring and
archiving by simply adding the node to the configuration and running an
instance of katmonitor on that node.

Presenter
Presentation Notes
For MeerKAT, the KATCP guidelines have been extended to include consistent failure reporting on each device through a proper FMECA process, as well as standardised device-status reporting for health monitoring. By dictating that high level failure sensors and health monitoring sensors are to be implemented by each KATCP device or subsystem, only a relatively small set of standard health and failure sensors have to be routinely managed and monitored, improving scalability. This simplifies the design of e.g. the health-monitoring GUI display, since all devices report consistently; the lower level device sensors (e.g. individual temperature sensors) are also available to the system, allowing hierarchical drill down when more detailed information is required. Furthermore, it gives the parties with the best knowledge of device behaviour and failure modes and their impact on the overall telescope system (the KATCP device vendors and SE) the capability to incorporate this knowledge directly into the CAM subsystem.Each proxy also rolls up health information for communication, sensors and functional status through aggregate sensors that indicate the worst status of all communications (comms.ok) and the worst status of all sensors (sensors.ok). Each KATCP device reports an evaluation by the unit itself of whether it is still functioning correctly or not, notwithstanding the presence of warnings or errors on some sensors (device_status as ok, degraded or fail). These provide single points of monitoring to roll up in hierarchical health reporting and availability and a single mechanism to display sensors for fault finding; drill down and interrogation of lower levels are only required when errors are reported. Failure detection sensors are further supported by standardised failure detection logging described in the KATCP guidelines. Similar to proxies that consolidate reporting across all the devices they control, each node manager consolidates reporting across all CAM processes it manages. Standard sensors are exposed for each process (e.g. process_ok, process_running) in the same way as the aggregate reporting is done on the proxy level (e.g. sensors.ok, comms.ok and all.ok), and is thus reflected on the health display. Distributed monitoring is implemented by running a local katmonitor component on each CAM node that monitors and archives the sensors of all the CAM proxies and other CAM components running on that node. The katmonitor instance writes its monitoring points to a central katstore archive server through network file system mounts routed through the bulk network, avoiding network traffic bottlenecks. Any new nodes added to the system are automatically included in the system monitoring and archiving by simply adding the node to the configuration and running an instance of katmonitor on that nod. The new monitoring points are automatically included into the rest of the system through interrogation and the adaptive design of the CAM subsystem.

19

Questions?

lvdheever@ska.ac

Presenter
Presentation Notes
For MeerKAT, the KATCP guidelines have been extended to include consistent failure reporting on each device through a proper FMECA process, as well as standardised device-status reporting for health monitoring. By dictating that high level failure sensors and health monitoring sensors are to be implemented by each KATCP device or subsystem, only a relatively small set of standard health and failure sensors have to be routinely managed and monitored, improving scalability. This simplifies the design of e.g. the health-monitoring GUI display, since all devices report consistently; the lower level device sensors (e.g. individual temperature sensors) are also available to the system, allowing hierarchical drill down when more detailed information is required. Furthermore, it gives the parties with the best knowledge of device behaviour and failure modes and their impact on the overall telescope system (the KATCP device vendors and SE) the capability to incorporate this knowledge directly into the CAM subsystem.Each proxy also rolls up health information for communication, sensors and functional status through aggregate sensors that indicate the worst status of all communications (comms.ok) and the worst status of all sensors (sensors.ok). Each KATCP device reports an evaluation by the unit itself of whether it is still functioning correctly or not, notwithstanding the presence of warnings or errors on some sensors (device_status as ok, degraded or fail). These provide single points of monitoring to roll up in hierarchical health reporting and availability and a single mechanism to display sensors for fault finding; drill down and interrogation of lower levels are only required when errors are reported. Failure detection sensors are further supported by standardised failure detection logging described in the KATCP guidelines. Similar to proxies that consolidate reporting across all the devices they control, each node manager consolidates reporting across all CAM processes it manages. Standard sensors are exposed for each process (e.g. process_ok, process_running) in the same way as the aggregate reporting is done on the proxy level (e.g. sensors.ok, comms.ok and all.ok), and is thus reflected on the health display. Distributed monitoring is implemented by running a local katmonitor component on each CAM node that monitors and archives the sensors of all the CAM proxies and other CAM components running on that node. The katmonitor instance writes its monitoring points to a central katstore archive server through network file system mounts routed through the bulk network, avoiding network traffic bottlenecks. Any new nodes added to the system are automatically included in the system monitoring and archiving by simply adding the node to the configuration and running an instance of katmonitor on that nod. The new monitoring points are automatically included into the rest of the system through interrogation and the adaptive design of the CAM subsystem.

	MeerKAT Control-and-Monitoring Design Concepts & Status
	Introducing the MeerKAT Project
	MeerKAT Project Progress
	Karoo �Radio�Astronomy Reserve
	KAT-7 in the Karoo
	Operational �KAT-7
	Evolution of MeerKAT CAM
	MeerKAT Key Design Concepts
	Slide Number 9
	MeerKAT Key Design Concepts
	MeerKAT Key Design Concept #2
	MeerKAT Key Design Concept #3
	MeerKAT Key Design Concept #4
	MeerKAT Key Design Concept #5 & #6
	MeerKAT Key Design Concept #7
	MeerKAT Key Design Concept #8
	MeerKAT Key Design Concept #9
	MeerKAT Key Design Concept #10
	Questions?

