
The new multi-core real-time control
system of the RFX-mod experiment

G. Manduchi, A. Luchetta, C. Taliercio
Consorzio RFX – Euratom-Enea Association

Oct 5-11 2013 ICALEPCS 14th International Conference on Accelerator &
Large Experimental Physics Control Systems

Why Plasma control?

Oct 5-11 2013 ICALEPCS 14th International Conference on Accelerator &
Large Experimental Physics Control Systems

Previous RFX-mod control system

MHD mode
control
Plasma position
control

Toroidal field
control

diagnostics

Oct 5-11 2013 ICALEPCS 14th International Conference on Accelerator &
Large Experimental Physics Control Systems

Critical factors in the previous system

• Latency
– Current latency is around 1.5 ms. This represents a critical factor in

quality of control leading sometimes to instabilities.

• Sampling frequency
– Current sampling frequency is 2.5 kHz. A higher sampling rate improves

the quality of integration/derivation.

• Computing power
– Operations such as sideband correction and sensor radius extrapolation

are highly computing-intensive. Currently only most significant modes
are considered.

• Testability
– The possibility of simulated runs of the system would have allowed the

detection of bugs in algorithms before running real control.

Oct 5-11 2013 ICALEPCS 14th International Conference on Accelerator &
Large Experimental Physics Control Systems

New Hardware Architecture

•Network based data acquisition
represents a temporary solution
due to budget constraint.

•The use of ATCA ADC boards is
foreseen in 2014.

•Tasks carried out by former VME
CPUs have been mapped into
the server cores.

•The main bottleneck due to
communication has been
removed

Oct 5-11 2013 ICALEPCS 14th International Conference on Accelerator &
Large Experimental Physics Control Systems

Software framework: MARTe

• MARTe is a software framework for real-time
applications
– Originally developed at JET and used for several controls, such

as vertical sabilization
• Multiplatform support

– OS abstraction is carried out by a set of C++ classes
• Single process – multiple threads model

– Threads are defined in a configuration file
• Agnostic on the kind of computation carried out

– User provided components extends a generic class GAM
(Generic Application Module)

– Other components implement generic I/O and services
• Configuration specified in a configuration file

– No changes in code required

Oct 5-11 2013 ICALEPCS 14th International Conference on Accelerator &
Large Experimental Physics Control Systems

MARTe configuration: 11 Threads

Oct 5-11 2013 ICALEPCS 14th International Conference on Accelerator &
Large Experimental Physics Control Systems

Pipelined multicore execution

• Pipelined organization with three stages:
– Data Acquisition
– Control Computation
– Reference Waveform Generation.

acqClock 0

CPU
core 0

CPU
core 1

CPU
core 2

CPU
core 3

CPU
core 4

CPU
core 5

time

...

...

...

ADC
stage

algorithmic
stage

DAC
stage

Software
PIPELINE

data out 0 data out 1

acqClock 1 acqClock 2 acqClock 3

Oct 5-11 2013 ICALEPCS 14th International Conference on Accelerator &
Large Experimental Physics Control Systems

Linux vs Linux MRG

• PREEMP_RT integrated in Linux MRG provides:
– Preemptible critical sections, protected by rt-semaphores instead

of spinlocks
– Priority inheritance
– Preemptible interrupt handlers

• All those aspect make the system more deterministic in
response

• We expected that advantages could be less evident in
multi-core application when contention for resources is
reduced

Oct 5-11 2013 ICALEPCS 14th International Conference on Accelerator &
Large Experimental Physics Control Systems

Linux vs Linux MRG

• Execution time for control is
clearly reduced in Linux
MRG even when running on
a dedicated core, probably
due to a different CPU clock
setting

• As expected, jitter is not
changed

mhd control execution time - Vanilla Linux

0

200

400

600

800

1000

1200

1400

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

us

Series1

mhd control execution time - Linux MRG

0

200

400

600

800

1000

1200

1400

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

us

Series1

Oct 5-11 2013 ICALEPCS 14th International Conference on Accelerator &
Large Experimental Physics Control Systems

Linux vs Linux MRG

• The time required to
transfer data from one
thread to the other is shown
for Linux and Linux MRG

• In this case the scheduler
is involved

• Clearly the jitter is largely
increased in in respect to
Linux MRG

Communication time between pre-processing and control threads
Linux MRG

0

100

200

300

400

500

600

700

800

900

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

us

Series1

Communication time between pre-processing and control threads
Vanilla Linux

0

20

40

60

80

100

120

140

160

180

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

us

Series1

Oct 5-11 2013 ICALEPCS 14th International Conference on Accelerator &
Large Experimental Physics Control Systems

Manual Core Assignment

• Assigning threads to cores
can be left to the OS
Scheduler

• Alternatively manual core
assignment can be carried
out by the combined usage
od ISOLCPU and
sched_setaffinity()

• The latter option is
mandatory in order to
achieve real-time
responsiveness

mhd control time distribution with ISOLCPU and sched_setaffinity()

0

200

400

600

800

1000

1200

1400

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

us

Series1

mhd control time distribution no IsolCPU no affinity

0

50

100

150

200

250

300

350

400

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

us

Series1

Oct 5-11 2013 ICALEPCS 14th International Conference on Accelerator &
Large Experimental Physics Control Systems

Linux Scheduler vs Hyperthreading

• When the number of tasks
exceeds the number of
available cores, task must
be shared

• Two possible approaches:
– Let the Linux scheduler

handle the tasks assigned to
each core by a combined
usage of sched_setaffinity()
and ISOCPU

– Double the number of “virtual”
cores by enabling
hyperthreading

Total latency in mhd control - full cores

0

50

100

150

200

250

300

350

400

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

us

Series1

Total latency in mhd control - half cores - Linux scheduler

0

10

20

30

40

50

60

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

us

Series1

Total latency in mhd control - half physical cores - Hyperthreading

0

50

100

150

200

250

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

us

Series1

Oct 5-11 2013 ICALEPCS 14th International Conference on Accelerator &
Large Experimental Physics Control Systems

Lessons Learnt

• The usage of general-purpose hardware allows keeping
pace with the mainstream technology evolution;

• The multi-core architecture fits very well with the modular
and distributed architecture of the control system;

• The performance of Linux, and especially of its real-time
extensions is now comparable with that of proprietary
and expensive real-time systems;

• Using a shared software framework avoided re-inventing
the wheel and led to a rapid development;

• Among the many positive aspects of MARTe, the
possibility of simulating the system proved extremely
useful when non IT specialists are involved in the
development of the real-time algorithms.

	Slide Number 1
	Why Plasma control?
	Previous RFX-mod control system
	Critical factors in the previous system
	New Hardware Architecture
	Software framework: MARTe
	MARTe configuration: 11 Threads
	Pipelined multicore execution
	Linux vs Linux MRG
	Linux vs Linux MRG
	Linux vs Linux MRG
	Manual Core Assignment
	Linux Scheduler vs Hyperthreading
	Lessons Learnt

