
QUICK TIPS

(--THIS SECTION DOES NOT PRINT--)

This PowerPoint template requires basic PowerPoint

(version 2007 or newer) skills. Below is a list of

commonly asked questions specific to this template.

If you are using an older version of PowerPoint some

template features may not work properly.

Using the template

Verifying the quality of your graphics

Go to the VIEW menu and click on ZOOM to set your

preferred magnification. This template is at 100% the

size of the final poster. All text and graphics will be

printed at 100% their size. To see what your poster will

look like when printed, set the zoom to 100% and

evaluate the quality of all your graphics before you

submit your poster for printing.

Using the placeholders

To add text to this template click inside a placeholder

and type in or paste your text. To move a placeholder,

click on it once (to select it), place your cursor on its

frame and your cursor will change to this symbol:

Then, click once and drag it to its new location where

you can resize it as needed. Additional placeholders can

be found on the left side of this template.

Modifying the layout

This template has four different

column layouts. Right-click your

mouse on the background and

click on “Layout” to see the

 layout options. The columns in

the provided layouts are fixed and cannot be moved but

advanced users can modify any layout by going to VIEW

and then SLIDE MASTER.

Importing text and graphics from external sources

TEXT: Paste or type your text into a pre-existing

placeholder or drag in a new placeholder from the left

side of the template. Move it anywhere as needed.

PHOTOS: Drag in a picture placeholder, size it first, click

in it and insert a photo from the menu.

TABLES: You can copy and paste a table from an

external document onto this poster template. To adjust

the way the text fits within the cells of a table that has

been pasted, right-click on the table, click FORMAT

SHAPE then click on TEXT BOX and change the INTERNAL

MARGIN values to 0.25

Modifying the color scheme

To change the color scheme of this template go to the

“Design” menu and click on “Colors”. You can choose

from the provide color combinations or you can create

your own.

QUICK DESIGN GUIDE
(--THIS SECTION DOES NOT PRINT--)

This PowerPoint 2007 template produces a A0

professional poster. It will save you valuable time

placing titles, subtitles, text, and graphics.

Use it to create your presentation. Then send it to

PosterPresentations.com for premium quality, same

day affordable printing.

We provide a series of online tutorials that will guide

you through the poster design process and answer your

poster production questions.

View our online tutorials at:

 http://bit.ly/Poster_creation_help

(copy and paste the link into your web browser).

For assistance and to order your printed poster call

PosterPresentations.com at 1.866.649.3004

Object Placeholders

Use the placeholders provided below to add new

elements to your poster: Drag a placeholder onto the

poster area, size it, and click it to edit.

Section Header placeholder

Move this preformatted section header placeholder to

the poster area to add another section header. Use

section headers to separate topics or concepts within

your presentation.

Text placeholder

Move this preformatted text placeholder to the poster

to add a new body of text.

Picture placeholder

Move this graphic placeholder onto your poster, size it

first, and then click it to add a picture to the poster.

RESEARCH POSTER PRESENTATION DESIGN ©
2011

www.PosterPresentation
s.com

© 2011 PosterPresentations.com
 2117 Fourth Street , Unit C
 Berkeley CA 94710
 posterpresenter@gmail.com

Student discounts are available on our Facebook page.

Go to PosterPresentations.com and click on the FB icon.

PVMANAGER: A JAVA LIBRARY FOR REAL-TIME

DATA PROCESSING

Increasingly becoming the standard connection layer in Control System Studio,

pvmanager is a Java library that allows creating well behaved applications that

process real time data, such as the one coming from a control system. It takes care of

the caching, queuing, rate decoupling and throttling, connection sharing, data

aggregation and all the other details needed to make an application robust. Its fluent

API allows to specify the detail for each pipeline declaratively in a compact way.

INTRODUCTION

REFERENCES

[1] http://pvmanager.sourceforge.net/

[2] G. Carcassi, Pvmanager & Graphene, EPICS spring meeting (2013)

[3] Control System Studio; http://controlsystemstudio.github.com

[4] http://graphene.sourceforge.net/

DATASOURCES

Datasources are the abstract definition for publish/subscribe data, which is the

typical mode for real-time systems, such as EPICS. Datasources work on channel, and

are able to subscribe readers or writers to each channel. Current implementations

include support for simulated signals, an in memory scratch space, filesystem,

Channel Access (v3) and PVAccess (v4).

The system can be easily extended with other types. All one needs to do is implement

a few abstract methods, and connect the callback of the desired system to the

methods that trigger processing of connection and message notifications. Datasource

automatically provide support for multiplexing (multiple readers on the same

channel). The rate decoupling (limit the rate from the datasource to the UI

subsystem) and rate throttling (decrease the rate if the UI can’t keep up) that are

needed for a well behaved client, are also automatically supported.

SERVICES

Command/response is another typical source of data. Examples of command/response

include web services (REST or SOAP), CORBA services and databases. The abstraction

for a service within the framework is an asynchronous call that takes a key/value map

of argument, and returns a key/value map of results. This allows to generically handle

very different types of data and services. The value, if possible, should map to VTypes

so that one can reuse many of the functionality and clients built on top of those.

The framework also includes a ServiceRegistry, which works as a locator for the

services. A typical use case in CS-Studio is that some plug-ins would register their

service implementation to the registry, while UI elements would use the registry to

fetch the service implementation given a name provided by the user.

FORMULA

Pvmanager provides a Domain Specific Language for data computation. This is

automatically done on background threads, making it easy to leave the UI thread

free. FormulaFunctions can be dynamically added in a formula registry, in much the

same way that services are added. They are automatically picked up by the parser.

The language supports overriding, and the match to the correct signature is done at

runtime. This also supports the case in which types within the expression are changing

dynamically. Support for standard mathematical operation has already been added, as

well as aggregation such as scalars into array and arrays into tables, and other utility

functions (pick the highest alarm, “pointer-like” function that given a string returns

the value of the channel with that name).

Figure 1: Architecture diagram. Shows the part of the client that runs at the rate dictated by the

source of the data on the right and the part of the client that runs at the rate at a client dependent

rate.

Pvmanager has grown into a full framework to gather data in real time, aggregate it

and perform computation. All this while taking care of the issues that such a

complicated multi-threaded system would entail.

CONCLUSION

G. Carcassi, K. Shroff NSLSII, Upton, NY 11973, USA

A common problem encountered by client applications for control systems is the

decoupling of the events from the controls network and the UI thread. The need to

aggregate the events in time (for rapidly changing pv/pvs) and for groups of pvs was

necessary to address various performance issues in CS-Studio and to support multi-

channel applications.

The goal of pvManager is to make writing clients for real-time data more straight-

forward, by providing all the pieces that such a client require, such as data rate

decoupling, via either queuing or caching, data aggregation/manipulation and

notification dispatch on the appropriate final thread.

ABSTRACT

ARCHITECTURE

The initial intent of pvmanager was just to address the recurring issues of writing a

well behaved client of a soft real-time system. The aim has now grown to provide a

full end-to-end framework for gathering data from different sources, both

publish/subscribe and command/response, aggregating it and performing computation

on background threads.

The framework now consist of multiple modules:

•vtype: provides the definition in terms of Java interfaces of a standardized set of

data. One is not limited to the use of these types (the basic type in pvmanager is

Object) but standardization on them allows to unlock all the functionality already

implemented

•datasources: provides support for accessing data from publish/subscribe systems

•services: provides support for accessing data from publish/subscribe systems

•formula: provides a pluggable Domain Specific Language for aggregation and

computation

The core of pvmanager allows combining all these elements and creating readers or

writers that are thread-safe with a managed rate of notification.

CS-Studio can now leverage all these elements, but, since they are well separated,

they can be tested without the UI environment (unit tests are much easier to write)

and can be used in other environments (such as plain Swing applications, command

line, web servers, and so on).

PVReader<T> pv = PVManager.read(expression)

 .readListener(new PVReaderListener<T>() {

 public void pvChanged(PVReaderEvent<T> event) {

 ...

 }

 })

 .notifyOn(executor)

 .timeout(timeDuration)

 .maxRate(timeDuration);

Figure 2: Overall Architecture of accelerator tools and services.

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

