
Development of A Scalable and Flexible
Data Logging System Using NoSQL Databases

M. Kago, A. Yamashita, JASRI/SPring-8, Hyogo, Japan

The current data logging system for SPring-8 accelerator powered by a relational
database management system (RDBMS) has been storing log data for 16 years. However,
the recent improvement and future plans of the SPring-8 accelerator require the data
logging system to increase writing performance and to handle large-volume data, but it is
not easy to extend the system for the following reasons. Therefore, we developed a new
data logging system.

The RDBMS has no horizontal scalability.
The advantages of the RDBMS, such as joining tables , become bottlenecks when scaled out. The general method for improving
server performance is to change to a high-spec server , but hardware costs are continuously increasing.

The data management is complex.
To improve writing performance, a number of log data are placed on one row to reduce the number of SQL statements needed
when they are stored in RDBMS. When new data are registered on the RDBMS, a new table has to be created.

The data acquisition has no flexibility.
The polling system of the server-client model uses tight coupled ONC-RPC and is highly interdependent. Therefore, the data
acquisition is limited by the OS and language environments.

New framework was developed. Two NoSQL (Not only SQL) databases*, Redis and
Apache Cassandra, were adopted to store log data. The data acquisition was designed
on the basis of ZeroMQ messaging library and MessagePack serialization library.
The system features are;

Scale-out
The system can easily grow the performance by adding more low-cost servers.
High Reliability
There was no single point of failure (noSPOF).
Flexible Data Acquisition
Users specify the data name and only send log data. Log data supports various data
type such as integers, reals, strings, arrays, and maps.
Low Latency Access
Users can take the latest data in microseconds order.

Item Specification

Hardware Intel Xeon X3470 2.93 GHz 4 Core
CentOS 6.2 64 bit

Redis Version 2.6.10, Number of process: 4
Apache
Cassandra

Version 1.1.5, 6 nodes cluster (replica: 3)
OracleJavaVM 1.6.0

Data
Acquisition

Number of clients: 240, relay processes: 4,
writer processes: 24

Event Log Number: 47,397, Cycle: 1 Hz
Average message size: 60 bytes

Log Generator

Long-tem Test

Current Status & Conclusion

Item Relay Server Cassandra Server

Processor Intel Xeon E5-2430, 2.2 GHz, 12 core

Memory 16 GB
OS CentOS 6.4 64 bit

Storage 1 SAS 15 Kr/m
450 GB × 2 Raid 1

SAS 15 Kr/m
450 GB × 2 Non Raid

Storage 2 N/A SATA 7,200 r/m
3 TB × 2 Non Raid

Network 1 Gb Ethernet × 2 ports

Power
Supply

Dual, Hot-plug,
Redundant power
supply, 550 W

Single, Hot-plug, 550 W

We are now migrating from the previous data logging system. The new system has been
installed in the actual environment.

Specifications of Servers

In the near future, data acquisition will begin small and the scale will gradually grow. Along
with these future plans, we will construct an alarm system using this system and will pursue
multi-platform support and web pages.

Interconnect LAN

Relay Server

Cassandra
Control LAN

・・・・・・・・

・・・

・・・・・・・・

・・・・・・・・

New Data Logging Sytem

Introduction

The table on the right shows the test
parameters. These data are actually generated in
SPring-8. The acquisition cycle is faster than the
current one.

Write Test

The writing test was conducted for 3 months.
No data loss during the test
No impact on write performance even when
the server was executed a forced termination.
Throughput of one relay process: ~180,000 ops/sec, one writer: ~5,000 ops/sec

Read Test

Redis; Read latency of the latest value

Average (1,000,000 events) 0.26 ms

Standard Deviation 0.14 ms

Cassandra; Read latency of the data for 1
day (86,400 points)

Average (10,000 events) 1.01 sec

Standard Deviation 0.18 sec

The reading test was conducted along with the writing test.

*A NoSQL database is defined as a new type database management system that is non-relational. It provides a mechanism for storage
and retrieval of data that employs less constrained consistency models than traditional relational databases. Motivations for this
approach include simplicity of design, horizontal scaling and finer control over availability.

1 process 20 processes

Users who want to store the log into this system insert the prepared function into their
data acquisition programs. The code packs the messages using MessagePack, and
pushes the messages using the Push/Pull patten the ZeroMQ communication library. The
data logging system uses MessagePack for all internal data representation. The Push/Pull
pattern sends messages from one sender to several receivers by the round robin algorithm
and can easily realize load balancing. When the sender detects a problem with a receiver,
the message is sent excluding this receiver. Any platform or programming language that
supports ZeroMQ and MessagePack can be a client of this system.

Relay Server
The relay server works as a gateway between the local computer and database.The relay

process manages the pull socket for receiving messages from the client and transfers the
received message to a writer process. The writer process converts the received message
into a database command and inserts the data into Cassandra and the Redis in parallel.

Perpetual Archive
Apache Cassandra is utilized for the perpetual archive. Cassandra is an open-source

distributed database of the Apache project. Its features include scale-out (see Fig. 1), high
write performance, fault tolerance, no SPOF, suitable for time-series data.

Figure 1: The write throughput when the
access load is increased. Hardware
specifications of a node are Xeon 2.93
GHz, 8 GB RAM, 64 bit Centos 6.2.
Cassandra is version 1.0.5. Data size per
row is 20 bytes, and a client inserts 1,000
rows at once.

Cassandra’s consistency provides a few guarantees and is called eventual consistency
(When the data are taken from six node cluster with a replication factor of three, we found
that the time required for guaranteeing consistency is about 1 sec). Therefore, real time
data are provided by the cache server.

0

100,000

200,000

300,000

400,000

500,000

600,000

0 20 40 60 80 100 120

W
ri

te
 th

ro
ug

hp
ut

 (
ro

w
s/s

ec
)

Number of process

cluster2
cluster4
cluster6

Cache Server
Redis is adopted for real time data cache.

Redis is an in-memory key-value store, and
is its support of a various data structures
such as list, set, sorted set, and hash. Redis
provides the real time data to the control
GUI and is used to complement
Cassandra’s consistency .

Redis works a single process. Therefore,
multiple Redis servers are parallelized by an
access library that we developed. Figure 2: The write latency of Redis

compared to Cassandra.

0

5

10

15

20

25

30

35

40

1 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 w
ri

te
 la

te
nc

y
(m

se
c)

Number of keys inserted at one operation

Redis (pipeline)
Cassandra (batch_mutate)

Be
tt

er

Relay process

Writer Writer

Event log

Relay process

Writer Writer

Architecture

Log Generators

The data logging system is designed on a three-layer model. All devices are connected
through a network. The event log is sent to several relay servers at the client’s own timing,
and is inserted into databases.

column name
Timestamp 1
Timestamp 2

MessagePack { value 1}
MessagePack { value 2}

column value

row key: “safety_topup_intlk/clock:20130904”

column name
Timestamp 1 MessagePack { value 3}

column value

row key: “safety_topup_intlk_beam/charge_diff:20130904”

LOG_DATA

Perpetual ArchiveCache Server

“safety_topup_intlk/clock:”
MessagePack{ timestamp 2 + value 2}

“safety_topup_intlk_beam/charge_diff:”
MessagePack{ timestamp 1 + value 3}

key
value

key
value

Event log

Relay Servers

…….. ……..

……..

ZeroMQ+MessagePack

Testing Parameters

Thrift APIRedis API

	スライド番号 1

