
B. Frak, T. D’Ottavio, M. Harvey, J. Jamilkowski, J. Morris, S. Nemesure, BNL, Upton, U.S.A.

CONTROLS
Collider - Accelerator Department *Work supported by Brookhaven Science Associates, LLC under contract no. DE-AC02-98CH10886 with the U.S.

Transparency is achieved by modifying the
name server records on as needed basis.
The Reflective Server when bootstrapping
device objects modifies their entries in the
master Controls Name Server to reflect
their new “location”. This record includes
a host name as well as RPC program and
version numbers required for all client
server communication. These records
remain unchanged for the duration of
proxy server lifetime and each Reflective
Server instance has a responsibility to
restore original entries upon shutdown.
Clients always obtain the location of
device objects from the name server,
which means modifying this central
repository is the only way to transparently
inject proxy instances to the live system.

This is the key area where Reflective Server
framework proves to be the most valuable.
By positioning itself in front of backend
infrastructure, it essentially removes all
subscribe-publish related scaling issues.
This mechanism relies on proxy instances
becoming exclusive clients to FEC server
instances, and thus taking the burden of
handling all, client issued, asynchronous
requests onto itself.

Extension is an advice, which cuts across
all sets and gets (input and outputs) for all
Reflective Server contained device objects.
This advice is supplied to the RS runtime
as a class file, which gets weaved with the
existing set of advices already attached to
the ADO set and get methods. The most
basic extension point overrides two
methods from the base aspect – one for
input and one for output modification. The
former has full control over the data sent to
the slave ADO, while the latter controls the
data shipped back to the clients. This tight
pairing can be utilized by device object
developers in a variety of ways during all
stages of a development cycle as well as in
deployed systems.

•  One Reflective Server per
FEC (the most common
scenario)

•  One Reflective Server for
multiple scattered ADO
instances (used to target
individual, high volume
applications)

