
Channel Access in Erlang
Dennis J. Nicklaus

Fermilab

Abstract

We have developed an Erlang language implementation of the Channel

Access protocol. Included are low-level functions for encoding and de-

coding Channel Access protocol network packets as well as higher level

functions for monitoring or setting EPICS process variables. This pro-

vides access to EPICS process variables for the Fermilab Acnet control

system via our Erlang-based front-end architecture without having to in-

terface to C/C++ programs and libraries. Erlang is a functional program-

ming language originally developed for real-time telecommunications ap-

plications. Its network programming features and list management func-

tions make it particularly well-suited for the task of managing multiple

Channel Access circuits and PV monitors.

EPICS

IOC

Erlang

Frontend

CA Device

Driver

Virtual Circuit

Manager

Virtual

Circuit

PV Search

Requests

TCP Channel

Access Msgs

EPICS

IOC

EPICS

IOC

...

Socket

Handler

Socket

Handler

Socket

Handler

Virtual

Circuit
Virtual

Circuit

Architecture

Channel Access device driver plugs into Erlang front-end framework

This device driver maintains list of Acnet device to EPICS PV translation

(these are downloaded at start-up time)

Virtual Circuit Manager manages PV searches, caches IOCs found,

maps between PV read requests and virtual circuits (IOCs)

Virtual Circuit manages monitors for one IOC, tracks state information of

messages required when opening a new channel and manages the TCP

socket

 TCP Socket Handler performs lowest level TCP communication, pass-

es messages received up to the Virtual Circuit

Highlights

 Pure Erlang Implementation

 Provides a bridge between Acnet Devices and EPICS PVs

 Channel Access client functionality

 Acnet device database stores PV name for corresponding Acnet device

 Searches for EPICS PVs (IOCs)

 Monitors (readings) or settings

 No C code or libraries to link with

 Erlang byte-code is very portable with no recompilation required

 Functional language opens up new applications

 No erlang server (IOC) code yet

Sample Code
Here is some sample lower level code which implements the PV search multicast

%%% Create a standard CA Message with the provided parameters

encode_any(Cmd,Psize,Dtype,Dcount,P1,P2,Payload) ->

 <<Cmd:16,Psize:16,Dtype:16,Dcount:16,P1:32,P2:32, Payload/binary>>.

%%% encode a PV name as a payload (pad out to an even multiple of 8 bytes)

name_to_payload(Name) ->

 Padbytes = (8 - (length(Name) rem 8)) * 8,

 Bname = list_to_binary(Name),

 <<Bname/binary, 0:Padbytes>>.

%%% Create the CA message used in UDP PV search commands

encode_search(Name,CID) ->

 Payload = name_to_payload(Name),

 encode_any(?CMD_SEARCH,size(Payload),0,?PROTO_VERSION,CID,CID,Payload).

%%% Send out the search packet to a list of addresses (i.e. EPICS_CA_ADDR_LIST)

send_out_ca_search(Sock,UDP,Name,NextCID) ->

 SearchPacket = ca:encode_search(Name,NextCID),

 lists:map(fun(OneUDP) ->

 ok = gen_udp:send(Sock, OneUDP, ?CA_PORT,SearchPacket)

 end, UDP).

Command Payload Size Data type Data Count

Parameter 1 Parameter 2

Payload

0 2 4 6 8

Channel Access Details

All Channel Access communications are with standard messages as

shown below (there is also an extended message we don’t support yet)

Acknowledgements

Thank you to Cosylab for the Channel Access protocol documentation

and to the tech-talk community for their continued help.

