
CERN

San Francisco, California
6 – 11 October 2013

High-Availability Monitoring and Big Data:
Using Java Clustering and Caching Technologies

to Meet Complex Monitoring Scenarios

M. Bräger, M. Brightwell,

E. Koufakis, R. Martini,

A. Suwalska,

CERN, Geneva, Switzerland

Monitoring and control applications face ever more demanding requirements: as both data sets and data
rates continue to increase, non-functional requirements such as performance, availability and
maintainability become more important. C2MON (CERN Control and Monitoring Platform) is a monitoring
platform developed at CERN over the past few years. Making use of modern Java caching and clustering
technologies, the platform supports multiple deployment architectures, from a simple 3-tier system to
highly complex clustered solutions.

ActiveMQ Broker ActiveMQ Broker

DAQ process DAQ process DAQ process DAQ process

C2MON client C2MON clientC2MON client

ActiveMQ Broker ActiveMQ Broker

C2MON server

Terracotta standby

Terracotta server

Terracotta Stripe

C2MON server

C2MON server core

DAQ
out

DAQ
in

DAQ
supervision

Cache
persistence

Cache
loading

Lifecycle

Configuration

Cache
DB access

Logging Alarm Rules

Benchmark Video access

C2MON
server modules

Client
communication

Authentication

ActiveMQ Broker

DAQ process DAQ process

C2MON client

ActiveMQ Broker

C2MON server

C2MON client C2MON client

C2MON
server

C2MON
DAQ API

my DAQ

C2MON
Client API

...

my App

@CERN: DIAMON

DIAgnostic and MONitoring (DIAMON) uses C2MON
to provide the CERN operators with tools to monitor
more than 3000 devices, high level applications and
servers across CERN.

@CERN: TIM

The Technical Infrastructure Monitoring (TIM) uses
C2MON to supervise and control 120,000 monitoring
points and to handle more than 60,000 different
alarms.

BIG DATA SCENARIO

This scenario is not yet deployed, but it would fit a
system that gathers data at a high rate from millions
of data points. At the same time it would be possible
to instantly deliver the data to a large set of clients, or
for complex real time processing across the entire
cache.

Deployment 1 Deployment 2 Deployment 3

Fast and Simple

Good performance, easy setup, and very simple
management. Made for scenarios where availability is less
critical.

Redundant and Available

The added redundancy on the server level allows for rolling
updates, as well as providing instant failover in case of a
single server failure.

Maximum Performance,
Maximum Availability

Multiple server nodes form a cluster, and are also optimised
for certain data points in the cache. In this scenario data
distribution is highly optimized, achieving maximum
performance and availability to meet even the most
stringent requirements.

Data Analysis TIM Viewer Web Viewer

C2MON: 3 Deployment Scenarios

Terracotta
Stripe

C2MON Server

C2MON Server C2MON Server

Terracotta standby

Terracotta server

ActiveMQ Broker ActiveMQ Broker

DAQ process DAQ process DAQ process DAQ process

C2MON client C2MON clientC2MON client

ActiveMQ Broker ActiveMQ Broker

Terracotta
stripe

C2MON
server

Terracotta
stripe

C2MON
server

A modular server concept, adaptable to individual needs
The heart of the system, based on an optionally distributed cache, provides a
basic set of functionalities: communication, lifecycle management and
configuration of the DAQs, initial load of the in-memory cache, recovery options,
and evaluation of alarms and business rules.
The possibility of adding as many individual server modules as needed makes
the use of the system very flexible.

Large data sets can normally be broken up into partitions with minimal
dependencies. This allows groups of data to connect to dedicated ActiveMQ
brokers and C2MON server nodes. Our strategy enables the cache to optimize
the data distribution, since C2MON nodes “specialize” in certain data points.

Cache strategy

A clustered server layer is able to process data updates in a load-balanced
manner, handles data avalanches and provides higher protection against
network or hardware failures.

Load balancing

The C2MON client API uses JSON
messages to enable the communication
between server and client layer, and the
execution of pre-configured commands.

Client Layer

The DAQ layer offers drivers to acquire
data from a variety of sources (OPCs,
PLCs, Oracle databases or other CERN
specific protocols). Each DAQ process
runs on a common DAQ core, which
manages the communication with the
C2MON server tier, and can also apply
filters improving the quality of the data.

Data acquisition Layer

The C2MON server runs as a standalone
Spring application, and comprises of a
core part, and a set of optional modules.

Server Layer

C2MON Architecture overview

DIAMON console

Terracotta stripe

DIAMON viewer

http://cern.ch/c2mon

C2MON implements a three-tier Java architecture using
the Java Messaging (JMS) framework ActiveMQ as
middleware, which allows an anonymous, fault-resilient
and horizontally scalable communication. A major aim

of the C2MON platform is to provide a clustered server
layer that is able to consume data updates in a load-
balanced manner. The modular concept allows writing
functional extensions for all three layers and to profit

from many ready-to-use components. Together with its
flexible deployment C2MON is adaptable in a short time-
scale to many different monitoring scenarios.

