
Real-time process control on multi-core processors
M. Ishii, Y. Furukawa, T. Matsumoto �

JASRI/SPring-8	 ICALEPCS2013, San Francisco, California �
October 07, 2013	

Motivation of study	
 The control systems for SPring-8 and SACLA adopt the MADOCA
framework. These equipment controls introduce the VMEbus system based on
the IA architecture Solaris 10. VME single-core CPU boards, such as the
SANRITZ SVA041, are in use.�
 In the MADOCA framework, a basic software scheme on a VME CPU board
consists of �

•  an equipment control process, �
•  some processes to write polling data in memory, �
•  a server process to send data from the memory to a database.

Additionally �
•  several fast feedback processes. �

Recent control systems have a tendency to increase the number of processes
running on a host. �

Operation verification of multi-core
processors	

 Conventionally, programs are developed with wait-to-release CPU resources
by using sleep() or the timeout function of select(). The Solaris system clock
frequency can be set up to 1000 Hz with high resolution. To satisfy a control
interval of less than 1 millisecond, it is an easy solution to install a busy-wait
process. However a busy-wait should not be used if it is necessary to avoid
100% CPU occupation on a single-core processor. If a real-time process
enters an infinite loop on a single-core processor, it becomes impossible to log
into the operating system. It is difficult to optimize priority control of
multiple processes with real-time and time-sharing classes on a single-core
processor. �

We studied the process control of multiple processes running on multi-
core processors.

We studied two models of VME multi-core CPU board. �
XVB601	 VP717	

GE	 Intelligent	 Pla4orms	 Concurrent	 Technologies	

Intel	 Core	 i7-‐620	 UE	 1.06	 GHz	 Intel	 Core	 i7-‐620	 LE	 2.0	 GHz	

•  dual-core processors with low power consumption �
•  support Intel Hyper-Threading Technology�

Ø  These VME CPU boards allow four processors to
appear to the host operating system.�

We investigated CPU sharing and process states under high workloads on
Solaris 10 using this test program. �

main() {�
"while (1); �

} �
Test program�

Performance measurement of MADOCA II	
We measured the performance of the round trip time (RTT) of message
transmission on Solaris 10, and used a VME CPU board, VP717. �

Message
Server	

Equipment
Manager	

Test Program	

ZeroMQ �

ZeroMQ �

The Message Server (MS2) and
EM are necessary components of
MADOCA II. In MADOCA II, all
messages go through MS2;
therefore, the priority control of
MS2 is important. �

MS2	 (RT)	 with	 binding	
EM	 (RT)	
TP	 (RT)	

MS2	 (TS)	
EM	 (TS)	
TP	 (TS)	

Minimum	 1.131	 ms	 1.029	 ms	

Maximum	 1.76	 ms	 141.985	 ms	

Average	 1.293	 ms	 1.141	 ms	

Median	 1.286	 ms	 1.126	 ms	

Standard	 deviaUon	 0.047	 0.67	

Statistics of RTT �

0	

1	

102	

103	

104	

101	

RTT (msec)	

co
un

t	

105	

0	

1	

102	

103	

104	

101	

co
un

t	

105	

RTT (msec)	

Summary	
We investigated the process control of multiple processes running on multi-
core processors. Even if an RT process goes out of control on multi-core
processors, the operating system continues to run stably. A process or thread
can occupy only one processor. Additionally we measured the performance of
message transmission RTT in the MADOCA II framework running on multi-
core processors. We determined that RTT is between 1 and 2 ms by the
adjustment of process control. This is suitable for real time control. Multi-
core processors are an essential resource for constructing real time control
systems. �

The SD of RTT is
extremely small.�
1 ms < RTT < 2 ms�
Ø  Good performance

for Real time control �

Scheduling class�
Solaris supports a time-sharing (TS) class and a real-time (RT) class. TS
class processes and RT class processes can coexist on the same
processor. �

processor	
0	

processor	
1	

processor	
2	

processor	
3	

CPU utilization = 100 %�

processor	
0	

processor	
1	

processor	
2	

processor	
3	

Five TS programs run on four
processors.�
Ø  two of the five processes are

placed in the run queue. The CPU
utilization of a process is 20%. In
this situation, it is possible to log
into the operating system. �

TS	 TS	
TS	

TS	 TS	

run queue�

processor	
0	

processor	
1	

processor	
2	

processor	
3	

Three RT programs and two TS
programs run on four processors.�
Ø  Two TS processes are placed in the

run queue. The CPU utilization of a
RT process reaches 25%, sum of
two TS processes is 25%. �

RT	
RT	

RT	 TS	 TS	

run queue�

Processor binding �
Solaris can bind a process to a specific processor.�

processor	
0	

processor	
1	

processor	
2	

processor	
3	

TS	 TS	 TS	 TS	

TS	TS	

Five TS programs and a TS program
bound to a processor run on four
processors.�
Ø  the CPU utilization of the bound

process is ~14% and the CPU
utilization of the others is ~18%.
Five processes share four processors. 	

bind	

Ø  processors are running on multi-core processors, the operating system continues to
run stably.	

Ø  It is effective to bind an RT process to a processor. However, it is not effective to
bind a TS process to a processor.	

Ø  A process or thread can occupy only one processor.	
Ø  The priority control of processes is extremely easy to achieve by setting a high

priority process to the RT class and binding the process to a processor. 	

Features of multi-core processors�

ishii@spring8.or.jp �

MOPPC128	

10^5 events� 10^5 events�

