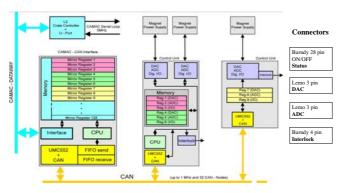
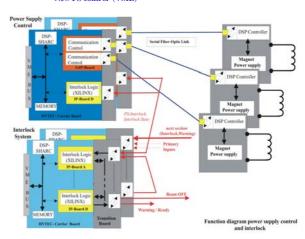
Control Sytem Hardware Upgrade


Guido Janser, Gregor Dzieglewski, Walter Hugentobler, Francois Kreis

Paul Scherrer Institute, 5232 Villigen, Switzerland

Abstract

The Paul Scherrer Institute builds, runs and maintains several particle accelerators. The proton accelerator HIPA, the oldest facility, was mostly equipped with CAMAC components until a few years ago. In several phases CAMAC was replaced by VME hardware and involved about 60 VME crates with 500 cards controlling a few hundred power supplies, motors, and digital as well as analog input/output channels. To control old analog and new digital power supplies with the same new VME components, an interface, so called Multi-IO, had to be developed. In addition, several other interfaces like accommodating different connectors had to be build. Through a few examples the upgrade of the hardware will be explained.


Old PS control (CAMAC)

o Functionality

- Digital and Analog I/O
- Ramping
- SOL/IST comparison
- Interlock generation

New PS control (VME)

VICB8003 Carrierboaard DSP Control for 6 power supplies, comparison setpoint - actual

Current limits, Interlock I/O

PSC-IP2 Industrypack Optolink Interface 2 channel

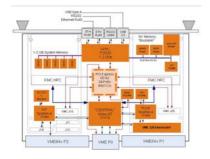
PSILK-TM Transitionmodule for 6 PS and 10 Interlockchannels

Solution to control old analog powersupplies with the new VME components

MULTI-IO

8 optolinks POF (plastic optical fiber) 16 analog out, 16 analog in

48 digital in 48 digital out


XILINX FPGA Spartan 3 (XC3S1500), Softcore μP Microblaze

FPGA functions: Serial Interface, DI, DO, AD, DA Interface, DAC ramping

Microblaze functions: Communication, Local control

Multi IO Blockschematic Opto N Kanal 1 Opto OUT DCDC

Solution for SwissFEL and future Upgrades: MMC (Master Magnet Controller)

Fast access over Gigbit Link