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Abstract

The ultrafast tomography system built up at the ANKA

Synchrotron Light Source at KIT makes possible the study

of moving biological objects with high temporal and spatial

resolution. The resulting amounts of data are challenging

in terms of reconstruction algorithm, automatic processing

software and computing. The standard and manually oper-

ated reconstruction method yields limited quality of recon-

struction images due to much fewer projections obtained

from the ultrafast tomography. Thus an algebraic recon-

struction technique based on a more precise forward trans-

form model and compressive sampling theory is investi-

gated. It results in high quality images, but is computation-

ally very intensive. For near real–time reconstruction, an

automatic workflow is started after data ingest, processing

a full volume data in parallel using the Hadoop cluster at

the Large Scale Data Facility (LSDF) to reduce the com-

puting time greatly. It will not only provide better recon-

struction results but also higher data analysis efficiency to

users. This study contributes to the construction of the fast

tomography system at ANKA and will enhance its applica-

tion in the fields of chemistry, biology and new materials.

INTRODUCTION

In the field of computed tomography (CT), sparse recon-

struction has been becoming a critical topic, which dis-

cusses how to estimate an accurate tomographic image if

the projection data are not theoretically sufficient for ex-

act image reconstruction according to the Nyquist-Shannon

sampling theorem. The insufficient data problem occurs in

the case of ultrafast tomography, which is currently under

construction at ANKA [1], the synchrotron light source lo-

cated at Karlsruhe Institute of Technology (KIT). The sys-

tem has basically two main advantages in the study of mov-

ing biological objects. First, the objects can be regarded

as static during the imaging process due to the fast scan-

ning mode, which correspondingly minimizes the effects

of the movements on reconstruction accuracy. On the other

hand it highly reduces the radiation dose so that the life-

time of biological objects increases for longer–time scien-

tific studying. However fewer projections in the range of
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180 degrees are actually obtained from the fast tomography

system due to the high rotation speed of objects, and the

application of standard analytic algorithm for insufficient

projection data such as filtered back-projection (FBP) [2]

will lead to conspicuous artifacts in reconstruction images.

The algebraic reconstruction techniques (ART) [2] are

the widely used iterative reconstruction algorithms recently

due to its great advantages in integrating the prior knowl-

edge to the reconstruction process. However the linear in-

verse problem becomes ill-posed due to too less measure-

ments. Inspired by the compressive sampling (CS) the-

ory [3], the tomographic reconstruction from incomplete

projection data is believed to have an exact solution in

some sparse transform space, such as the gradient space

of the underlying image. As a result, Total Variation (TV)–

based algorithms obtain high popularity in image restora-

tion [4]. Emil Y. Sidky et al. firstly introduced the concept

of TV into CT reconstruction considering the sparse dis-

tribution of the gradient of source image and developed a

new algorithm TV-POCS in 2006 [5]. It performs a TV

minimization by the gradient descent method after each

SIRT (Simultaneous Iterative Reconstruction Techniques)

iteration for sparse reconstruction of incomplete projec-

tion data. Later in 2008, Sidky et al. updated the algo-

rithm to the steepest descent method with an adaptive step-

size called ADS-POCS for TV minimization improving the

reconstruction robustness against the cone-beam artifacts

from sparse reconstruction [6].

In more general applications of signal denoising and

restoration, CS theory has been studied a lot in order to

restore the original signal from sparsely measured data.

It happens to hold the same view that TV norm is used

as the popular regularization for sparse image restoration.

Different from these algorithms TV-POCS, ADS-POCS of

CT reconstruction, it integrates the TV norm into the data

consistency constrains forming one minimization program.

The original sparse signal is restored by solving this mini-

mization program with the TV regularization. Several TV

solvers have been publicly available such as L1-Magic [3],

TwIST [7], NESTA [8], RecPF [9] and TVAL3 [10]. In

this paper TVAL3 is integrated to the ART framework to

perform the reconstruction of the real experiment data. It

shows high reconstruction quality and will be denoted as

CS–ART algorithm for tomography reconstruction.

Even though CS–ART algorithm proves high quality re-

construction images, it is known as a time intensive method

in comparison with the standard method FBP and a par-

allel computing architecture is required. The Large Scale

Data Facility (LSDF) [11], located on the same campus as
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ANKA is not only a distributed storage facility support-

ing data storage and management, but also connected to a

Hadoop [12] cluster for parallel data processing. In this pa-

per, we will focus on the parallel computing of 3D tomog-

raphy reconstruction and reports its promising computing

performance. It is also a significant part of the designed

workflow of LSDF for automatic data analysis of ANKA.

CS–ART RECONSTRUCTION METHOD

For tomography reconstruction, a forward model de-

scribing the imaging process must be defined firstly to erect

the inverse problem. Usually a straight line or a fat line is

used to model the X–ray going through the object area [2].

In this section, we will use a more precise ray model for

X–ray tomography forward model and then discuss the al-

gorithms for solving the established inverse problem.

Figure 1: Forward model for ART methods.

ART Forward Model

Taking the sensor geometry into account, it is more ap-

propriate to describe the rays as having a finite width and

a given distance. Therefore, a new ray model in ART pos-

sesses two features: 1) a ray is of a certain width τ ; 2)

a distance exists between the neighbor rays. To illustrate

this, shaded rays are shown in Fig. 1. Generally, ART as-

sumes that the cross section of the object consists of an

array of unknowns representing the X–ray absorption co-

efficients of the object, denoted by sj , (j = 1, 2, . . . , N).
The intersection area represents the contribution of image

cell sj to the ith ray projection. It is expressed as a factor

aij equal to the ratio of intersection and cell area. Let pi be

the projection measured with the ith ray which equals

pi =

N
∑

j=1

aijsj , i = 1, 2, . . . ,M, (1)

where M is the total number of rays. The linear equation

system (1) can be simply written as a matrix form p =
As, where s = {s1, s2, . . . , sN} is the image vector; p =
{p1, p2, . . . , pM} is the set of all measured projections.

Reconstruction Method

The purpose of the reconstruction algorithm is to obtain

the original object s from the observations p by solving the

discrete linear equation system (1). However, in the case

of incomplete projection data, the linear system is an ill-

posed problem. To produce reasonable solutions, the TV

algorithms are to incorporate the assumption of gradient

image sparseness on the image function s to arrive at a so-

lution from data p, which actually implement the following

optimization program:

min ‖s‖TV , such that p = As, (2)

where ‖s‖TV is defined as:

‖s‖TV =
∑

m,n

‖ ▽ sm,n‖ =
∑

m,n

Gs
m,n (3)

Gs
m,n =

√

(sm,n − sm−1,n)2 + (sm,n − sm,n−1)2. (4)

The program (2) is commonly performed in two steps [5,

6]: (1) SIRT iteration for data consistency, and (2) TV de-

scent iteration for reasonable solution. In the context of to-

mography reconstruction, the optimal solution is achieved

by repeat these two steps alternately until the convergence

condition is fulfilled. Another possibility to perform the

TV algorithm is considering the TV term as a regulariza-

tion in a cost function without any constrains and reform

the minimization program as the following

min ‖p−As‖2
2
+ λ‖s‖TV . (5)

It is a general form of inverse problem in the field of sparse

signal restoration taking into account the data consistency

and TV minimization meanwhile. λ is the tradeoff param-

eter to control the balance between these two terms. The

bright side of performing this kind of program is that some

mature solvers have been available to solve the probelm as

mentioned in the section of introduction. They can be in-

corporated into the reconstruction framework without need

to change too much codes. The robustness of reconstruc-

tion image and convergence rate are the critical properties

of concern. TVAL3 is a “Total Variation Minimization

by Augmented Lagrangian and Alternating Direction Al-

gorithms”, proposed to handle the optimization problems

resulting from some linear inverse problem with TV regu-

larization. It exhibits fast convergence rate and meanwhile

keeps the robustness of the resulting images. In this paper,

the TVAL3 solver is incorporated with the forward model

introduced in the previous section, which will be denoted

as CS–ART method.

The CS–ART method is used to reconstruct the real bi-

ological data set (fast tomography of a weevil) and shows

high quality reconstruction image as Fig. 2. The recon-

struction results of one slice are compared. Figure 2(a) is

a referenced reconstruction image which is obtained from

1500 projections by FBP algorithm. Figure 2(b) is the re-

constructed image from a sub-set, 60 projections of 1500,
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(a) (b) (c)

Figure 2: Reconstruction result comparison: (a) is the reference image from 1500 projections constructed by FBP; (b)

is reconstructed from the sub–data set, 60 projections, by FBP and shows serious artifacts and streaks; (c) shows the

reconstructed image by the CS–based ART method from the same 60 projections.

Figure 3: Automatic data processing workflow of LSDF for data analysis of ANKA tomography beamline TOPO–

TOMO/IMAGE.

showing serious artifacts and streaks. The third reconstruc-

tion image, displayed in Fig. 2(c) is reconstructed from the

same sub-data set as (b), but uses the CS–based ART algo-

rithm, which reduces the artifacts a lot and is similar to the

reference image in quality assessment.

PARALLEL RECONSTRUCTION AT THE

LSDF

The LSDF is designed to cope with the increasing re-

quirements of data intensive scientific experiments. Cur-

rently, data management and analysis at ANKA are still

performed manually. Thus, a workflow of LSDF is de-

signed as Fig. 3 for automatic data analysis of ANKA in

the near future. The part of parallel computing is discussed

in this section.

Data Parallel Reconstruction with CS–ART

Even though CS–ART algorithm proves high quality re-

construction images, it is known as a time intensive method

in comparison with the standard method FBP. The sequen-

tial implementation of a full volume reconstruction will

take tens of hours. Thus, a parallel computing architecture

is required for 3D tomography reconstruction. It is quite

straightforward to implement the data parallel reconstruc-

tion at LSDF cluster.

As shown in Fig. 4, the 3D experimental data mentioned

above consists of 1024 slices. Each of them will be re-

constructed by the same algorithm of CS–ART. With the

Figure 4: Data parallel computing for 3D computed tomog-

raphy reconstruction.

MapReduce framework of Hadoop [12], the whole recon-

struction job is able to be distributed to computer nodes of

the cluster. In our implementation, 37 nodes in the Hadoop

cluster are available. Each node in the cluster has the abil-

ity to process up to six mapping tasks and two reducing

tasks in parallel, which is set in Hadoop as a compromise

between task size and number of cores being used. Thus,

we divide the whole job, 1024 slice reconstructions, into a

number of mapping tasks, which are afterward distributed

to different nodes automatically by Hadoop. Each map-

ping task handles a similar number of slices sequentially,

but the executions in each node for different mapping tasks
 are parallel.
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Table 1: Times Recorded for Parallel Reconstruction Job

Parallel Tasks n Time (s) Speedup

1 39727 –

12 3415 11.63

24 1747 22.73

37 1107 35.85

74 650 61.08

111 488 81.39

148 417 95.20

185 360 110.2

222 330 120.0

Reconstruction times in seconds are recorded directly on

the number of parallel tasks. They are shown in Table 1

.The first line gives the time for sequential implementation.

From the times, the speedup factors are also given to eval-

uate the performance of parallel computing. It is defined

as the division of sequential implementation time by the

parallel time. As the number of parallel tasks increases

from 12 to 222, the time needed for a 3D reconstruction

job decreases rapidly to 330 seconds, which is less than 6

minutes. Meanwhile the speedup factor goes up to 120.

It suggests that the 3D reconstruction of the experimental

data can be finished in a near instantaneous time with the

parallel computing architecture at LSDF.

DISCUSSION AND CONCLUSION

In this paper, sparse reconstruction in the application of

ultrafast CT is discussed. It happens frequently due to the

need of reducing X–ray radiation dose or some limitations

of imaging device and experimental condition. The insuf-

ficient data appear in case of ultrafast tomography because

of its fast rotation to reduce the imaging time. Even though

the insufficient data for exact reconstruction using the stan-

dard method, TV–based algorithm still shows promising re-

construction results based on the CS theory compared with

the conspicuous artifacts of the FBP method. In this pa-

per, TVAL3 algorithm based on the TV is incorporated into

our framework of sparse CT reconstruction with the precise

forward model, denoted as CS–ART algorithm, showing

promising reconstruction results and fast convergence rate.

In this paper, the data parallel computing method for a

full volume tomographic reconstruction is also discussed.

With the Hadoop cluster at the LSDF, data parallel com-

puting of 3D CT reconstruction is performed by distribut-

ing the reconstruction job into a number of parallel tasks.

Compared with the sequential reconstruction taking more

than ten hours, the parallel computing using 37 nodes at the

LSDF only needs less than 6 minutes with the speedup fac-

tor reaching up to 120. The parallel computing part com-

pletes the LSDF workflow for automatic data analysis. So

the workflow will highly enhance not only the data storage

but also the data analysis efficiency.

The promising reconstruction image and high comput-

ing performance demonstrate the effectiveness of LSDF

in processing big experimental data from the tomography

beamline of ANKA. In the near future, the reconstruction

framework will be integrated into the LSDF workflow to

improve the data analysis efficiency and provide results to

users in nearly instantaneous time. This is a critical build-

ing block on the way to construct the fast tomography sys-

tem at ANKA.
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