
GRAPHENE: A JAVA LIBRARY FOR REAL-TIME SCIENTIFIC GRAPHS
G. Carcassi, K. Shroff# NSLSII, Upton, NY, USA

Abstract
While there are a number of open source charting

library available in Java, none of them seem to be suitable
for real time scientific data, such as the one coming from
control systems. Common shortcomings include:
inadequate performance, too entangled with other
scientific packages, concrete data object (which require
copy operations), designed for small datasets, required
running UI to produce any graph. Graphene [1] is our
effort to produce graphs that are suitable for scientific
publishing, can be created without UI (e.g. in a web
server), work on data defined through interfaces that
allow no copy processing in a real time pipeline and are
produced with adequate performance. The graphs are then
integrated using pvmanager [2][3] within Control System
Studio [4].

INTRODUCTION
Graphene aims to provide plots with suitable

performance characteristics for the real-time processing
of large datasets. The open source library we explored
were typically aimed either at non-scientific uses, at
smaller datasets that are required or at data that would not
change in real-time, see Fig. 1...

Parts of Graphene should still be considered not feature
complete. The current aim is to make sure that the core
engine works with the requested performance profile and
that the graphs are correct. Not that the line can be
painted green or that one can use Arial for the labels.

ARCHITECTURE
The main aspect of graphene is that the painting is done

on a buffer, instead of on screen directly. This means that
all the painting operations can be done without a UI, for
example in a web server, and on background threads.

Dataset definition are pure interfaces and are not
coupled with any external type system. This allows
graphene to read data from any source with no copy
operations, issue that is critical while handling large
datasets.

Since data changes dynamically, the auto-ranging has
to take that into account to avoid the continuous
stretching and shrinking of the axis. Graphene keeps both
the current range of the dataset and the aggregated range,
so that the axis can grow monotonically until they reach a
stable size.

GRAPHS
The graphs currently available in graphene include the

following:
 Line graph
 Scatter graph
 Histogram
 Bubble graph

Figure 2 shows some examples of the available graphs
and interpolations algorithms.

PERFORMANCE
Given the ability of Graphene to plot on any thread,

painting can be parallelized on modern multi-core
systems. In the diagram, we show the number of graphs
per second (600x400 histogram) on an Intel Core i7-840
Quad Core 1.87 GHz. One can see that the throughput
increase linearly when increasing from one to four
threads, and then saturates. With 8 threads, 3871 graphs
per seconds are generated, which is more than enough to
handle 3 or 4 graphs on screen with a fluid rate of refresh
(200 graphs per second would be needed).

Additionally based on the size of the plot requested,
Graphene automatically performs data reduction
significantly improving performance. Fig. 3 and Table 1
show the impact of graphenes data reduction on the
performance of the Line graph, each pixel we draw the
first, min, max and last values.

Figure 1: Performance of Graphene in a multi core
environment. Number of plots per second vs number of
threads.

 __

#shroffk@bnl.gov

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC133

User Interfaces and Tools

ISBN 978-3-95450-139-7

901 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 2: Example plots available in Graphene.

Table 1: Performance Numbers

N points Time ms
(no reduction)

Time ms
(reduction)

10 0.986232349 0.980788919

100 1.924796332 1.872743481

1,000 5.553831552 5.345118646

10,000 38.57528235 15.73147583

100,000 431.8435542 18.28121567

500,000 4280.394044 26.20789778

1,000,000 15556.68846 36.36819781

10,000,000 257.451379

50,000,000 1178.120411

CONCLUSION
While Graphene is still a work in progress, and we lack

the appropriate resources for making its development
proceed at a rapid pace, it is on the right track with the
performance goals we set. Future work will include
exploration to provide JavaFX components.

REFERENCES
[1] http://graphene.sourceforge.net/
[2] G. Carcassi, Pvmanager & Graphene, EPICS spring

meeting (2013).
[3] http://pvmanager.sourceforge.net/
[4] Control System Studio;

http://controlsystemstudio.github.com

Figure 3: Comparison of the performance for producing
line plots with and without data reduction. Number of
points plotted vs plotting time in milliseconds.

TUPPC133 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

902C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

