
CHEBURASHKA: A TOOL FOR CONSISTENT MEMORY MAP

CONFIGURATION ACROSS HARDWARE AND SOFTWARE

A. Rey∗, A. Butterworth, F. Dubouchet, M. Jaussi, T. Levens, J. Molendijk, A. Pashnin

CERN ,Geneva, Switzerland

Abstract

The memory map of a hardware module is defined by

the designer at the moment when the firmware is speci-

fied. This memory map is then used by the software de-

velopers to define device drivers and front-end software

classes. Maintaining consistency between the hardware

and the software is critical. In addition, the manual process

of writing the VHDL firmware on one side and the C++

software on the other is very labour-intensive and error-

prone. Cheburashka is a software tool developed in the Ra-

dio Frequency group at CERN which eases this process.

From a unique declaration of the memory map, created us-

ing the tools graphical editor, it allows us to generate the

memory map VHDL package, the Linux device driver con-

figuration for the front-end computer, and a FESA (Front

End Software Architecture) class for debugging. An addi-

tional tool, Gena, is being used to automatically create all

required VHDL code to build the associated register con-

trol block. These tools are now used by the hardware and

software teams for the design of all new interfaces from

FPGAs to VME or onboard DSPs in the context of the ex-

tensive programme of development and renovation being

undertaken in the CERN injector chain during Long Shut-

down 1 (2013-14). Several VME hardware modules and

their associated software have already been deployed and

used in the SPS RF system.

INTRODUCTION AND BRIEF HISTORY

The Radio Frequency (RF) group is responsible for the

accelerating and damping systems at CERN. The high-

speed digital electronics for the cavity and beam feedbacks

are implemented mainly in the VME form factor. The

team of hardware designers works closely with a team of

software developers who are responsible for developing

the front-end control software for the VME systems us-

ing the FESA [1] framework under Linux. The interface

between the hardware and software worlds is through the

memory map of the device. Historically, memory maps

were described in a Microsoft Excel worksheet, which al-

lowed easy editing and sharing of the file via CERN cen-

tral folders in a format familiar to the hardware design-

ers. The memory map was then entered by hand into the

Controls Configuration Database (CCDB) [2] and standard

tools from the CERN Controls group were used to generate

device drivers. However, this process was fastidious and er-

ror prone. A simple copy-paste error or a typo could cause

∗ anthony.rey@cern.ch

several long hours of software debugging. The need of an

automated system to parse memory maps, compute block

addresses, generate drivers and software variables has been

expressed for several years already.

In 2008 an initial tool was written in C++, running from

the command line, which extracted the memory map de-

scription from the CCDB and generated a driver wrapper

library for use in the FESA class. It was susequently ex-

tended to generate parts of the XML design document of

a FESA class mapping the registers of the device to datas-

tore fields and interface properties. This XML could then

be inserted by hand into the FESA design document. It

also generated the C++ code necessary to access the reg-

isters, which could be inserted into the FESA class code.

Although its use was quite expert-oriented, this application

proved to be very time-saving for software developers.

In order to find a global solution, including editing of

the memory map in the same application, the software de-

velopers proposed the idea of a memory-map template that

hardware designers could fill in and where variables would

be defined once in a single place. From this master reposi-

tory, all code relating to the memory map would be gener-

ated: firmware VHDL fragments, DSP header files, device

driver description files, FESA class design and code and

so on. From these wishes several solutions came by them-

selves:

• An XML file with an XSD template for memory-map

formatting

• A user interface based on Java so that it could run on

any operating system

• A central repository with versioning support for XML

file storage

• An attractive user-friendly interface that would en-

courage users to move to this new product

The concept of Cheburashka was born in 2009, but due to

lack of resources its development progressed only slowly

during several years. In summer 2011 a production series

of new RF cards for the PS Booster synchrotron awoke the

project and work started, focused on VHDL code genera-

tion. Early in 2012, driver and FESA code generation fol-

lowed.

TUPPC116 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

848C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools



Figure 1: Main interface for Cheburashka application

FUNCTIONALITY

Memory Map Editing

The first challenge was to create a user-friendly memory

map editor that could offer, at least, similar features to the

hardware designers as Excel. A big effort has been made to

create a new application that would be accepted by users.

Creating a new memory map from scratch is quite

straightforward. Once you have understood the termin-

ology, you can rapidly add registers and memory blocks

to your memory map, and once you have specified their

size, their addresses are computed automatically. The

memory map is defined as the root element of our design.

Each element can have children, i.e. other elements, and

attributes, properties describing particular elements. For a

given element, some attributes are mandatory and allow

identification of the element, others are optional. Once

a block is selected, several actions can be performed:

• Duplicate : The selected block and all its children will

be cloned and added below.

• Move Up or Down : Blocks can be rapidly shifted up

or down depending on the requirements.

• Deletion : Blocks can be removed by a simple click

on a button.

For each of these actions, block addresses are automatically

re-computed in the background.

Graphical User Interface

Most of the graphical layout had already been thought

out and provided before 2011. In order for it to be accepted

and used by a majority of the hardware designers, a con-

siderable amount of time has been invested in developing

practical functions such as

• A complete ”File” menu (Fig. 2)

• A history of recently used memory-maps

• Undo/Redo functionality (Fig. 3)

• A search tool with extended filters (Fig. 4)

• Keyboard shortcuts for frequently used functions

Copy-Paste commands could not be programmed as such;

instead a ”clone element” button is available in the center

of the main window.

The colour theme has also been carefully thought out

and tested so that the contrast between rows in tables is

highlighted without being agressive.

Figure 2: A ”File” menu designed to be familiar from many

other software applications.

Figure 3: ”Edit” menu, Undo/Redo and Search commands

have been often requested and are appreciated.

Figure 4: Search Tool, with three optional filter fields: the

search can be restricted to a name, an element type and or

an attribute

Submaps

A memory map can include another memory map, as an

external file. This is known as a submap. Memory block

addresses of this submap are then shifted by the submap’s

U

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC116

User Interfaces and Tools

ISBN 978-3-95450-139-7

849 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



address in the parent memory map. It is possible to include

the same child memory map several times as long as the

name and address are different. It is also possible to import

submaps recursively; the only limit is that submap’s depth

should be smaller or equal to parent’s depth.

Code Generation

This important part for both hardware and software de-

signers has been facilitated by the object oriented approach

of the data structure. For hardware designers, Cheburashka

generates automatically a VHDL register declaration file

for their firmware. Thanks to a plugin application called

Gena, they can also generate a full VHDL implementation

of the memory decoder block. Gena is an external appli-

cation, written in Python, which takes as input a memory

map saved by Cheburashka and adds a number of code gen-

eration features. If the hardware design uses a dedicated

digital signal processor (DSP), the user can define its mem-

ory map in Cheburashka and generate the corresponding C

header file for inclusion in the DSP code using Gena.

For software developers, Cheburashka generates

• a definition file for use with the CERN Controls

group’s device driver generation tool Encore [3],

• a C++ driver wrapper library with a class providing

Get-Set methods for each memory block,

• the design, in XML format, of a FESA class, sort-

ing registers and memories depending on their Access

mode (Read-Only, Read-Write, Write-Only) and their

persistence,

• the C++ classes associated with each FESA class

property and their makefiles.

The FESA infrastructure offers tools for importing and

integrating external designs and classes.

Persistence

When designing a memory map, the user can specify for

each memory block the kind of persistence desired:

• PPM (Pulse to Pulse Modulation): PPM logic is used

at CERN on all accelerators in the LHC injector

complex, and multiplexes settings by ”user” (beam

purpose and client). In a PPM system, settings and

acquisition make sense only when the associated user

is played by the timing system. For each user time-

slot, the control system should then load respective

settings into hardware and, at the end of the slot, collect

acquisitions.

• FESA: The last entered setting will be stored and

restored when the front-end computer is rebooted.

• None: No setting persistence will be kept and the

hardware value will not be reloaded on reboot.

Before the advent of Cheburashka, software developers

needed several days to write the driver and its wrapper, the

FESA design and the C++ classes, plus long debugging ses-

sions for tracking typos. With Cheburashka, the process of

creating a running test environment from a memory map

takes less than one hour.

Memory Map File Management

Cheburashka would not be a complete and successful

project if it was not well integrated into CERN’s work-

ing environment. This means that, once a memory map is

ready, it should be made available to other control system

tiers working on different operating systems. Generally,

hardware and firmware design are performed with tools

running on a Windows computer, while software develop-

ment is done on a Linux computer. A dedicated repository

has been created on CERN’s SVN [4] service, which adds

versioning control and allows multi-platform access.

A memory map created and saved with Cheburashka is

an XML file, difficult to decypher when not opened with

the software that created it. An XSLT (XSL Translations)

file has been written which renders the memory map access-

ible and easy to read back when opened in a web browser,

generating a complete snapshot of the firmware (Fig. 5).

Figure 5: XML Memory map opened in a web browser

DEVELOPMENT AND IMPROVEMENTS

Although Cheburashka is already in operational use and

has successfully contributed to optimising resources, there

is still room for improvement, and some new features are

currently being implemented. Version 3 will be the next big

release, and other upgrades will come later on. A complete

mechanism for bug reporting and improvement requests,

based on Jira [5], was put in place from the beginning. Pri-

orities are assigned as soon as a new item arrives and a

development or bug fix is started accordingly.

TUPPC116 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

850C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools



Work in Progress for Version 3

As Cheburashka is integrated in a complex software en-

vironment, it needs to keep up with the evolution of other

tools. Currently, the FESA project has moved from version

2.10 to 3; this is a major upgrade that introduced several

changes in design and code. In its current release, 2.12.17,

Cheburashka offers an operational FESA 2.10 class gener-

ation, and a beta version for FESA 3 generation, soon to

become operational.

Keeping up with the latest FESA version will not be the

only improvement. In parallel to code and design gener-

ation, Cheburashka is also testing a new feature, the pos-

sibility to merge an existing version of a FESA design

with the latest one generated from the memory map. This

will leave all the “non-generated” properties and code un-

touched and replace only the properties and classes gen-

erated by Cheburashka. This option, once fully debugged,

should greatly help improve productivity in software devel-

opment.

Database Declaration

In order to have a fully running test environment, the

new hardware device and its driver must be declared in

the Controls Configuration Database. Access to this

service is limited to trained software developers via a

web client. As all the necessary information is already

available in Cheburashka for performing such a declaration,

the CERN Controls group have agreed to provide write

access to the necessary views allowing Cheburashka to

automatically declare hardware modules and drivers. This

will make the process of creating a test environment from a

new memory map even faster.

Acquisition Buffers

Cheburashka is now expected to perform more complex

tasks and processes. A concept which has been standard-

ised in the digital hardware of the RF systems is that of ac-

quisition memory buffers, used to store internal digital signals

as a sort of virtual oscilloscope. The acquisition memory

is split into channels that represent a physical memory

resource in the hardware and each of these is split into

multiple buffers that represent different data types that are

acquired simultaneously, such as I/Q data. This hierarchy

gives the hardware designer full flexibility in defining dif-

ferent memory resources, but ensures that they can be read

out with a standardised interface. This is a big improve-

ment over previous implementations that were manually

implemented on a card-by-card basis with differing inter-

faces. Acquisition freeze and release can be performed on

a channel-by-channel basis allowing an operator to control

which channels will be written to at a particular time. The

design structure for this functionality is ready and the C++

code for handling this complex mechanism is currently

being debugged.

Documentation Generation

The possibility to generate a firmware documentation

based on the memory map structure has been recognised

as a useful improvement. The structure can easily be put

in the table and many options can be provided to allow a

very detailed description. It will be possible to generate a

printable document, whose output format would probably

be in LaTeX.

CONCLUSION

Cheburashka is first and foremost a team effort and an

example of what a good collaboration between software

and hardware developers can produce. The software team

took charge of the design and software development and

hardware team invested a lot of effort in requirements def-

inition and debugging sessions. They also made the effort

of moving to a new, promising, yet incomplete, tool. Soft-

ware developers have gained a substantial amount of time

thanks to this tool, now that repetitive simple tasks such as

driver generation, FESA class design and C++ code gen-

eration are performed automatically. Incoming upgrades

will bring more automated processes, improving overall ef-

ficiency and allowing them to focus on other tasks.

The project has been integrated in a complete environ-

ment, maintained by the CERN Controls group and IT de-

partment, including SVN repositories, Jira issues tracking

tool and Eclipse [6] plugins for project development, build

and release configuration.

Most importantly, users have migrated to this new solu-

tion, causing them to change their working habits: with a

reasonable effort, most of them have adopted Cheburashka

rapidly and have been quite active in reporting bugs and

desired improvements. These requests have been fulfilled

within short delays; our reactivity helped gaining their

trust. All these facts put together allow us to conclude that

Cheburashka is on the right track for becoming a successful

project.

REFERENCES

[1] M. Arruat et al, ”Front-End Software Architecture”,

ICALEPCS07, Knoxville, Tennessee, USA, 2007

[2] Z. Zaharieva & M. Martin Marquez, ”Database foundation

for the configuration management of the CERN accelerator

controls systems”, ICALEPCS2011, Grenoble, France, 2011,

MOMAU004

[4] http://subversion.apache.org

[3] J. D. Gonzalez Cobas, ”Status and how-

to for encore as replacement for dgII”,

http://indico.cern.ch/conferenceOtherViews.py

?view=standard&confId=167545, CERN, 2012

[5] https://www.atlassian.com/en/software/jira

[6] www.eclipse.org

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC116

User Interfaces and Tools

ISBN 978-3-95450-139-7

851 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


