
EPICS DATA AQUISITION DEVICE SUPPORT
V. Isaev, N. Claesson Cosylab d.d, Ljubljana, Slovenia

M. Plesko, K. Žagar, COBIK, Solkan, Slovenia

Abstract
Every control system has to deal with a large number

of input/output devices which offer a similar kind of
capabilities. For example, all data acquisition (DAQ)
device offer sampling at some rate, which in many cases
is configurable. If each such device were to have a
different interface, engineers using them would need to be
familiar with each device specifically, requiring more
time for familiarization, inhibiting transfer of know-how
from working with one device to another and increasing
the chance of engineering errors due to a
miscomprehension or incorrect assumptions, which brings
forth integration, maintenance and upgrading
(replacement) issues. Also, implementation of device’s
interfaces would be more costly than necessary, as for
every type of device a whole set of documentation
(interface definition, requirements specification, test
plans, etc.) would need to be produced.

Here, an attempt to standardize such interfaces and
address the mentioned issues is described. Nominal
Device Model (NDM) is a model which proposes to
standardize the EPICS [1] interface of analog and digital
input and output devices, as well as image acquisition
devices (cameras).

INTRODUCTION
EPICS provides a native interface for integration of

devices which is called device support. Physically, device
is a board (or other hardware unit) which can provide
various functions. This interface allows the developer to
define and register device specific functions for reading
data from, and writing data to, an underlying device.
These functions can be called from IOC shell command-
line or through the Process Variable (PV) record (in/out
records). In the second case, developer also has to define
and register their own EPICS devices. Fig. 1Figure 1 (a)
depicts pure EPICS device support architecture.

First attempt to standardize device interface in EPICS
context was made by introducing records which provides
an interface for specific devices. E.g. EPICS
steppermotor record is an interface for the stepper motor.

In EPICS context, device interface could be
standardized in two ways: using a single process variable
(PV), or with multiple PVs. In the first case, the device’s
parameters are covered by PV record’s fields.
steppermotor record is an example of single PV interface.
In case of multiple records interface, each device’s
parameter is represented by one record (one to one
relation).

asynDriver
asynDriver was developed to simplify EPICS device

support, which implements core for asynchronous

operations, defines set of EPICS devices that covers most
developer’s needs and provides a convenient way to
connect PV record to handler functions in the source
code. It also covers a number of standard communication
interfaces (serial interface, Ethernet, Gpib, and etc.).
These features eliminate routines related to EPICS device
definition and PV record connection establishment.
asynDriver assumes that multiple PVs are used to define
an interface with a device, and therefore makes use of
standard EPICS record types (ai, ao, bi, bo, waveform,
etc.). System architecture with device-specific asynDriver
is represented on Fig. 1 (b). asynDriver is recommended
as a useful and convenient way to bring asynchronous
functionality to a driver, and is already used by the
multitude of device-specific drivers developed with it.

Figure 1: EPICS device support architectures.

A recent attempt of device class generalization in

EPICS was made by Mark Rivers in his application of
asynDriver for controlling area detectors (CCDs) which is
called areaDetector [2]. areaDetector is a module which
provides a general-purpose interface for area (2-D)
detectors in EPICS. areaDetector supports a large number
of cameras and can be extend with plugins that allow
manipulation of acquired images (e.g., image processing
or storage). The Nominal Device Model described here-in
extends the principles of the areaDetector also to
analog/digital input/output devices.

NOMINAL DEVICE MODEL
Nominal Device Model (NDM) provides generalized

interfaces for analog and digital input and output devices.
If we were to look closely at the device-specific
asynDriver code, we can identify the parts of the drivers

(c)

Device specific
NDS driver

Channel access

NDS
PV records

asynDriver

NDS

Device specific
NDS driver

NDS driver
architecture

Device specific
C-API

Device specific
C-API

Device specific
EPCIS support

driver

Device specific
EPCIS support

driver

Channel access

Pure EPICS
device support

Device specific
C-API

Device specific
C-API

Device specific
PV Records

Device specific
PV Records

(a) (b)

Device specific
asynDriver

asynDriver

Device specific
asynDriver

Channel access

asynDriver
architecture

Device specific
PV Records

Device specific
PV Records

Device specific
C-API

Device specific
C-API

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC059

Experiment Control

ISBN 978-3-95450-139-7

707 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

which will be very similar from driver to driver especially
if we are talking about devices of similar kind (see Fig.
2).

Firstly, the PV record templates are defined in EPICS
database files. Then, asynDriver’s interfaces are
implemented. Finally, there is code for interrupt
dispatching from the device to the asynDriver, and in
turn, the EPICS record.

Figure 2: Architecture of device specific asynDriver.

Nominal device model is implemented in EPCIS by
the Nominal Device Support (NDS) library. It is based on
EPICS libCom [3], asynDriver [4], boost [5] and Loki
libraries [6]. NDS provides common, reusable parts, and
exposes them as interfaces (see Fig. 3). It was defined
with the following goals:

 Simplify implementation or procurement of device
drivers by defining a framework for communication
between stakeholders, project specification
documentation and project management templates.

 Define a common EPICS interface for devices,
which could be used to configure and manage all
devices in a similar manner. This reduces
maintenance and upgrade issues.

 Provide a straightforward C++ interface for base
functions which a kind of devices supports. This
reduces implementation time and increases
supportability of the device driver.

 Hide asynDriver complexity from the device driver
developer where it is not necessary. This allows
developers to focus on the device specific parts of
the driver.

 Provide implementation of common functions in the
NDS itself, so that it can be reused across device-
specific-driver implementations.

Architecture of a system with device specific NDS
driver is represented in Fig. 1 (c).

Behavioural and Structural Model
The model is described in terms of structure and

behavior.

Figure 3: Architecture of device specific NDS driver.

Structure is defined by a class inheritance hierarchy of
device, channel groups and channels (see Fig. 4). All
objects have a list of functions that may be invoked upon
them. Functions on objects can be made accessible via
EPICS by associating them with write and read operations
on a record. In addition, a device can have a number of
initialization parameters that defines the device (e.g. the
hardware address or device file of the low level driver).
Parameter values are set at IOC initialization stage inside
EPICS’ st.cmd start-up scripts.

The meta-model defined in this way covers a wide
range of devices:

 Data acquisition (DAQ).
 Signal generators (analog output).
 Digital input and output devices.
 Cameras and other image acquisition devices.

NDS provides a description of standard triggering
mechanism. NDS implements software triggering. This
mechanism should be overwritten by the device-specific
if hardware supports native triggering. However, the
specification given by NDS for specifying triggering
condition should be adhered to.

Messaging is a mechanism which allows sending or
receiving text messages to model’s objects. Model has a
set predefined messages, e.g., to list the device’s
capabilities), to issue a self-test and to upgrade firmware.

Object state machine describe possible states and
transitions between them. State machine has three kinds
of event handlers which allow developers to interfere in
transition: possibility to veto the transition, state exit

Device specific
asynDriver

asynDriver
interface

asynDriver

Timing device
support

Device specific
code

IOC
initialiation/

deinitilization

Process Variable
definition

(.db)

PV handler's
registration
(C source)

Asynchronous data
processing

PV handlers call
dispatching

Device specific
NDS driver

NDS

DAQ common
functionality

Timing device
support

IOC
initialixation/
deinitilization

Process Variable
definition

(.db)

PV handler's
registration
(C source)

Asynchrnous data
processing

PV hadlers call
dispatching

Device specific
code

asynDriver

TUPPC059 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

708C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

handler and state entry handler. NDS defines state
machine at device and channel levels.

Device

ChannelGroup Channel

ImageChannel ADIOChannelNISegment

Figure 4: NDS device model.

IOC state tracking allows the driver to be notified

when IOC starts initialization, completes initialization or
shuts down. This allows the device driver to initialize
itself as well as clean-up when the IOC terminates.

Functionality
The functionalities that NDS can support are grouped in
the following categories:

 Analog input configuration (gain, ground, and etc.)
 Triggering
 Image parameters configuration
 Firmware update/Software uploading
 Signal generation
 Fast Furrier Transformation
 Filtering

All functions have some predefined EPICS PV records,
which can be included in an EPICS project when they are
required. Also, virtual C++ class members are provided
for setter and getter functions which should be
overwritten when functionality is implemented.

Definition of functionalities at the level of the nominal
device model facilitates efficient communication between
various stakeholders (e.g., the users and implementers of
the device support), as they are well documented in the
NDM, and don’t need to be specified at the level of
individual device-specific support.

Interfaces
NDS provides a C++ interface to developers of device-

specific drivers. NDS itself is based on the the C++
extension of the EPICS asynDriver (asynPortDriver).
NDS hides from the developer all the complexity of the
communication with asynDriver and allows focusing on
the business logic of the device itself. Implementation of
the device specific driver is reduced to inheriting from the
relevant NDS-provided class and overloading its methods.

Abstract base classes are defined for Device,
ChannelGroup, analog/digital I/O channels and image
channels. Developers of device-specific drivers then
extend from these classes. E.g. National Instruments (NI)
could have a specific Channel Group implementation

which would define the advanced triggering supported by
NI boards.

NDS provides EPICS interface which is represented by
a set of EPICS database templates. Developer can expose
required functionality to EPICS by including these
template files in the product’s database file.

Extensibility
NDS doesn’t define any constraint on the interfaces;

therefore a developer is free to extend any interface.
Developers can define their own PV record, message
types, etc. Extension includes two simple steps:
implementing required behavior by implementing a
handler function, and registering the handler. Registration
requires one line of code, and implementation is a regular
member function of a C++ class.

For example, by leveraging the extensibility of NDS,
we also plan to standardize support for a “nominal data
acquisition system”. It will consist of a timing board and
a combination of a digital input/output device, whose
actions (sampling, signal generation) will be synchronized
to the timing board.

USER SUPPORT
Development of device specific NDS driver starts by

instantiating the EPICS application template. NDS
provides a template of an example application which
would then be customized by device-specific drivers.

Instantiation of a template provides a ready-to-build
device-specific NDS driver and an EPICS application for
testing it. So immediately after instantiating application it
can be built and run.

CONCLUSION
NDS is a model described in terms of structure and

behavior. Structure of the driver is defined by C++ classes
and can be easily extended. In this way, the default
behavior of model’s components can be overridden and
specialized for particular device.

NDS thus reduces driver the effort required to develop
device-specific functionality, as well as make the use of
NDS-based devices more uniform.

ACKNOWLEDGMENT
We would like to thank the ITER Organization, in

particular Stefan Simrock and Petri Makijarvi, for their
input and feedback on the design and implementation of
the nominal device model.

REFERENCES
[1] EPICS, http://www.aps.anl.gov/epics/index.php
[2] Area detector module

http://cars.uchicago.edu/software/epics/areaDetectorDoc.html
[3] EPICS Application Developer’s Guide.
[4] asynDriver: Asynchronous Driver Support

http://www.aps.anl.gov/epics/modules/soft/asyn
[5] BOOST C++ libraries, http://www.boost.org
[6] Loki C ++ library, http://loki-lib.sourceforge.net

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC059

Experiment Control

ISBN 978-3-95450-139-7

709 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

