
ADOPTION OF THE ”PyFRID” PYTHON FRAMEWORK FOR NEUTRON
SCATTERING INSTRUMENTS

M. Drochner, L. Fleischhauer-Fuss, H. Kleines, M. Wagener,
S. v. Waasen, FZ Julich / ZEA-2, Germany¨

D. Korolkov, Bruker AXS GmbH, Germany

Abstract

To unify the user interfaces of the JCNS (Juelich
Centre for Neutron Science) scattering instruments, we
were adapting and extending the ”PyFRID” framework.
”PyFRID” is a high-level Python framework for instrument
control. It provides a high level of abstraction, particu-
larly by use of aspect oriented (AOP) techniques. Users
can use a builtin command language or a web interface to
control and monitor motors, sensors, detectors and other
instrument components.

The framework has been fully adopted at two instru-
ments, and work has been started to use it on more.

INTRODUCTION

After the initial construction phase at FRM2, where we
had to get the instruments into operation quickly, instru-
ment operators and users expressed the wish to have a
more unified user interface at the various instruments. As
described in [1], a kind of poll was taken, and a simple
scripting language was defined which is powerful enough
to do common measurements yet almost intuitively to han-
dle. As an implementation of that language, the ”PyFRID”
[2] project was started, implementing not only the com-
mand line parser but also the semantics of the commands
and other components which are needed to build an instru-
ment control system. The ”PyFRID” system is deployed
on the ”BioDiff”, ”MARIA” and ”KWS3” instruments.

In the meantime, another instrument control project
called ”NICOS2” was started by a competing group at
the same facility (actually based on an old and aban-
doned project called just ”NICOS”). Both ”PyFRID” and
”NICOS2” are modern, Python based implementations of a
control system framework. Functionality is comparable, as
are their logical positions within the overall control system
structure.

Recently, a decision was taken, on grounds which are
not technical but mostly based on developer manpower,
in favour of ”NICOS2”. While there are no immediate
plans to migrate the three instruments mentioned above
to ”NICOS2”, there will be no further developments for
”PyFRID” beyond basic support. So this article can be seen
as a concluding report about our ”PyFRID” activities.

APPROACHES FOR MODELING
COMPLEX SCATTERING INSTRUMENTS

IN CONTROL SOFTWARE
Scattering instruments as we are concerned with gener-

ally consist of a large number of mechanical and electri-
cal components which need to be accessed at a level de-
termined by engineering. Examples are stepper motor or
encoder pulses (for positioning of components), voltages
or currents (for magnetic fields), or speeds and phases (for
choppers). For practical use however, units need to be used
which make sense to the physicist operating the instrument.
Here we can have various levels of abstraction, e.g. com-
mon units of measurement (millimeters, or Tesla), or appli-
cation specific terms like momentum transfer and recipro-
cal lattice coordinates. Also, simple components are often
grouped into more complex subsystems, as a collimation
line comprising multiple elements and apertures, each aper-
ture in turn made of four individual blades, driven by a step-
per motor each. This suggests a hierarchical, tree-like view
of the instrument, with the leaves being elemental compo-
nents and increasing abstraction towards the root. Since
control systems are usually distributed, with some network
transparency, the control system developer has some choice
at which levels of the hierarchy network protocols are used,
and where just programming APIs.

TACO [3] and TANGO, which are used as middleware
in our instrument control systems (see [4] for a higher level
overview) encourage ”stacking” of device servers. This
means that servers which implement more abstract func-
tions (e.g. the aperture in the example above) are by their-
selfes clients to one or more other device servers which
operate logically closer to the hardware. User interface
programs typically use the topmost layer of servers, but
for diagnostic purposes it is possible to access any layer.
This scheme allows for modularity and avoids duplication
of efforts, a function implemented in a TACO server can
be easily reused. The downside is additional complexity.
A user action leads to multiple network requests which are
translated into each other; diagnostic and error handling
becomes challenging.

In our systems, we have thus avoided complex server
stacks and implemented device interaction, calculations
etc. in the client programs. Duplication of efforts can
hardly be avoided this way – each client dealing with axes
does the translation from machine units into physical co-
ordinates itselfes. This is somewhat mitigated by use of
common libraries for these functions, and instrument spe-
cific parameters located in the TACO/TANGO database. If

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC048

Experiment Control

ISBN 978-3-95450-139-7

677 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



multiple programming languages are used, multiple imple-
mentations of analogous functions cannot be completely
avoided though.

H
a
r
d
w
a
r
e

TA
C

OTA
CO

TA
CO

TA
CO

TA
CO

TA
CO

TA
CO

TA
C

O

CMD

Client

CMD

Client

GUI

Client

GUI

Client

stacked TACO

simple TACO, complex clients

PyFRID / NICOS2

CMD

Client

GUI

Client

Control

Server

N
e

t

Library

Library

Figure 1: Different ways to organize control software.

A system built on PyFRID (or NICOS2, for that mat-
ter) uses a topology which shares parts of both these ap-
proaches, trying to avoid the problems mentioned (see Fig.
1). All instrument specific functions are dealt with within
the PyFRID instance, which is a single Python program.
Access to hardware uses only basic functions; besides
TACO/TANGO support, it is possible to interface to other
access methods. A PyFRID instance can support multiple
user interfaces, for command line or web based control.

STRUCTURE OF ”PYFRID”
The installed PyFRID software consists of a set of

Python libraries installed at the standard location for ex-
ternal packages (”site-lib”), and a command line utility to
generate and manage instances. The libraries contain the
code which implements the script language and the stan-
dard commands within it, device handling and modules
which implement authentication and logging in addition
to the basic application framework. Libraries for access
to specific devices and the web server component are dis-
tributed as separate packages.

A PyFRID instance for an individual instrument can be
created using the command line utility (”pyfrid-admin”).
This resembles the layout and philosophy of the popular
web application framework ”django” ([5]). As in ”django”,
a directory structure for the instance is created in the user’s
current directory, containing template files and another
command line utility to manage the new instance. With
the new command line utility, new commands and devices

can be added to the PyFRID instance; templates and glue
code are added to the instance tree automatically, pulling
in components of the central library as required. The user
then needs to adapt the generated template code to the spe-
cific needs of the intruments.

For a simple motor device, as an example, adaption only
requires to fill in the ”position” and ”status” member func-
tions of the generated class, with code which connects to
the actual hardware. Device accesses can be done in mul-
tiple threads. To use this, the device access code needs to
be thread safe. (This turned out to be a problem with the
TACO-Python binding which is part of the TACO distribu-
tion, but it was possible to fix with little effort.)

Figure 2: Screenshot of the web UI.

For the web interface (see Fig. 2), the popular ”tornado”
web server libary ([6]) is used. The application allows
to visualize and control the devices in the system, using
client-side JavaScript code. Communication between the
client web UI and the PyFRID server is done through a pri-
vate protocol, which can in principle also be used to con-
nect other client UIs.

CONCLUSION
PyFRID is a novel, modern approach to control systems

for spectrometers and similar instruments. It utilizes the
power of the Python programming language. This leads to
compact, elegant code. While it will not be further devel-
oped at our institute, its ideas are worth keeping for future
developments.

REFERENCES
[1] M. Drochner et al., New Developments for the JCNS Neutron

Scattering Instruments, ICALEPCS 2009, Kobe, Japan, 2009.

[2] PyFRID software, code at https://github.com/pyfrid, docu-
mentation at http://escape-app.net/html/

[3] TACO control system, http://www.esrf.eu/

[4] M. Drochner et al., Relocation and Reconstruction of the
Jülich Neutron Scattering Instrumentation - Challenges and
Plans, PCaPAC2005, Hayama, Japan, 2005.

[5] Django Software Foundation, Django Web Framework,
http://www.djangoproject.com

[6] Tornado Python web server, http://www.tornadoweb.org

TUPPC048 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

678C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control


