
WHEN HARDWARE AND SOFTWARE WORK IN CONCERT

M. Vogelgesang, A. Kopmann,
Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Germany

T. Faragó, T. dos Santos Rolo, T. Baumbach,
Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Germany

Abstract
Integration of control and data processing is required

to operate an X-ray beam line in the most efficient way.
Although control systems such as TANGO address the dis-
tributed nature of experiment instrumentation, standardized
APIs that provide a uniform and asynchronous device ac-
cess are still missing. Moreover, process control and data
analysis are not yet integrated in the most efficient way. In
this paper we present concepts and implementation details
of Concert, a Python-based framework to integrate device
control, experiment processes and data analysis which we
used to control calibration procedures and high-speed to-
mography scans.

INTRODUCTION
Modern synchrotron beamlines require precise control of

a large range of diverse hardware devices. To increase mod-
ularity and improve fail safety, most devices are accessed
via network APIs. Unfortunately, it is virtually impossible
to describe semantically correct device hierarchies with the
existing solutions due to the low-level details. However,
a device hierarchy, comprising an API that all devices of
one device class adhere to, is necessary to build high-level
process abstractions.

Another reason for a new high-level control system is a
potential integration of process control and data processing.
Process control allows us to build experiments that take the
sample under investigation into account, e.g. triggering data
acquisition. Integrated data processing can reduce wasted
time by allowing on-site investigation of the preliminary
results. Current control systems do not integrate control and
processing at all.

In this paper, we present a Python-based high-level con-
trol system called Concert. It is primarily designed for high-
speed radiography and tomography but is general enough
for all kinds of experiments. The main requirements and
constraints during its development were:

1. Concert should provide a standardized device hier-
archy and API independent of the underlying device
access, suitable for rapid development of automation
processes.

2. Asynchronous device control is mandatory to reduce
the time spent on synchronization and hence improve
throughput. It should be as transparent to the user as
possible.

3. Existing technologies should be used wherever pos-
sible to reduce development time. This also requires
open interfaces and easy extensibility.

4. Additionally, modern development paradigms and
tools should be employed to maximize quality and
robustness.

With our system in place, not only do we reduce the
duration of an experiment but also enable process control
and high-volume data processing for novel experiments
such as on-line reconstruction of tomographic data sets and
image-based data acquisition.

RELATED WORK
TANGO [1] and EPICS [2] are the most common control

systems used in the synchrotron community. Both systems
provide hardware-independent and distributed access of a
variety of devices. However, neither of them provide a high-
level device and process control API. In the TANGO camp,
Sardana provide a higher-level layer TANGO [3]. How-
ever, due to its tight integration it is not (yet) as platform-
independent as we need it.

SPEC is a commercial X-ray diffraction control system
that has been extended for use with other types of exper-
iments as well. Due to a custom scripting language and
SPEC-specific idioms, interoperability is slightly reduced.
Moreover, being a closed product, SPEC requires changes
from the vendor to include new core features.

A fully automated software-controlled tomography setup
is used at the TOMCAT beamline at the Swiss Light Source
for high-throughput X-ray tomography experiments [4]. To
achieve long intervention-free scan times, the system is built
statically and can neither be easily extended nor re-used for
other experiment types.

CONCEPTS AND IMPLEMENTATION
Fundamentally, a control system maps real hardware de-

vice access to some kind of software abstraction. This ab-
straction exposes certain parameters and operations specific
to a device. In Concert, every device type (e.g. motor, de-
tector, etc.) derives from a base Device class. This device
class provides basic functionality shared by all devices: a
parameter interface, locks and state information.

By deriving device type classes from the Device class,
we obtain a class hierarchy as shown in Fig. 1. This hi-
erarchy guarantees reusability of top-level interfaces due
Python’s polymorphism property. Hence, a higher-level
process which uses such an interface will work with all

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC044

Experiment Control

ISBN 978-3-95450-139-7

661 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

1..*

Parameter

+ get()
+ set(value)
+ unit
+ limit

Device

Motor

+ move()
+ stop()
+ . . .

TangoMotor

NativeMotor

Figure 1: Simplified class hierarchy. Parameter and
Device classes form the basis to build device types (a
Motor class in this case) and subsequent concrete imple-
mentations.

implementations of that interface. For instance, the base
Camera class provides a grab method to acquire one frame.
This interface has many hardware-specific implementations
which a higher-level process can use without knowing the
hardware-specific details just by calling grab.

Device Parameters
Each device exposes an arbitrary amount of parameters

which are uniquely identified by a name and map to a
Parameter object. The user can read and – depending
on the access rights – write values into that Parameter
object. Each access is logged and the messaging system
notifies interested parties about a change to the device. Be-
fore the value is actually passed to the hardware device, it is
validated against the Parameter’s soft limit and checked for
physical unit compatibility.

Concert provides both, an enumeration and a dictionary-
like API to fetch parameters in a programmatic way. This
is used to query values for displaying information in user
interfaces:

for p in device:

value = p.get(). result ()

print("{0} -> {1}".format(p, value))

p = device[’position ’]

p.set(2 * q.mm)

Each Parameter can also be accessed by its name via at-
tribute lookup. Hence, one can set the position also with:

device.position = 2 * q.mm

Device classes not only provide property-like attributes
but can also implement device-manipulating methods that
change the state internally (for example starting a continu-
ous motion). To provide a valid interface for all devices of
the same type, each base class of that device type either im-
plements its methods directly or calls device-specific meth-

ods. The latter is implemented by having the public method
(e.g. Motor.home) call a private method (Motor. home)
that is in turn implemented by the concrete device class.
This way the interface contains the required home method
regardless of the concrete device knowledge.

Unit Validation
Parameter value is always associated with a physical unit

as provided by the pint module. pint includes all base SI
units, SI-prefixes (e.g. kilometers) and derived units (e.g.
meters per second). It is also used to calculate quantities
(numerical values bound to a unit) and to convert the result
to a final target base unit.

We enforce the usage throughout the system, from the
base parameter class to the user interface to reduce the
chance of invalid input. Whereas in most systems, the user
can only input what the device accepts (which they also
must know!), any of the following equivalent statements is
possible in Concert:

cam.exposure_time = 0.002 * q.s

cam.exposure_time = 2 * q.milliseconds

cam.exposure_time = q.minute / 120000.0

Asynchronous Operation
To reduce the total amount of time to control several inde-

pendent devices, device accesses must be parallelized wher-
ever possible. Concert provides asynchronous device access
by encapsulating parameter access and device methods in
future objects. A future represents a value produced by an
asynchronous operation that is ready at some time in the
future. It provides methods to query its state (running(),
cancelled(), done()), to get the final result (result())
and to attach callbacks that are called when the future is
done (add done callback()). To produce a future for a
task, it is internally submitted to a ThreadPoolExecutor.
Although Python’s global interpreter lock (GIL) prevents
real multi-threading, device operations will still run in par-
allel because I/O operations yield from execution.

By decoupling the parameter access from de-referencing
the value, we can access several devices at the same time.
The future objects themselves can then be used to synchro-
nize with other asynchronous operations by chaining call-
backs or waiting explicitly for a future to finish. Contrar-
ily, attribute-like parameter access is always executed syn-
chronously because setting the parameter cannot return a
future:

Synchronous access

motor.position = 1 * q.mm

Asynchronous access returns a future

future = motor.set_position (1 * q.mm)

future.wait()

Because we cannot foresee the methods that are attached
to derived device classes, we provide a Python decorator
@async that wraps device methods to provide a similar
asynchronous interface. This means that device developers

TUPPC044 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

662C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

do not need to care about how parallelism is implemented.
All device base class methods are already wrapped in this
way:

Partial class definition of Motor

class Motor(Device):

@async

def move(self , delta):

self.position += delta

Moving the motor asynchronously

f = motor.move(-2 * q.mm)

f.wait()

With concurrent operations, there is always the danger that
two independent code paths access the same device asyn-
chronously, thus leading to a race condition. To solve the
problem, each device has a lock that is activated by the with
statement:

with motor , detector:

Other processes cannot access

neither motor nor detector

motor.move(1 * q.mm)

data = detector.grab (). result ()

Because the with statement is executed atomically from
Python’s point of view, deadlocks with two devices and two
processes are not possible.

Process Control
The basic device and parameter abstractions can be used

to control devices manually. One could use these mech-
anisms to write simple scripts that perform certain tasks.
However, these tasks often have a very similar functional-
ity and differ mostly only in a few parameters. Concert
reduces re-inventing the same procedures with a high-level
process control module, that is the result of decomposing
the recurrent logic from hardware-specific operations.

A very common procedure is a scan of a parameter (e.g.
motor position, camera exposure time) and evaluation of a
measure (e.g. pressure, image response) at each scan point.
The Scanner object from the process module provides this
in an abstract way. By passing Parameter objects instead
of Devices, we can model every type of scan, for example
a tomographic scan could look like this:

def acquire ():

return detector.grab()

scan = Scanner(stage[’angle ’], acquire)

future = scan.run()

positions , frames = future.result ()

In this example, the scanner manipulates the rotation stage’s
angle and acquires one frame at each set position. When the
process is finished, the positions and the actual frame data
are returned. Although scanning can already process the
measured data, it is not suitable for feedback-based control
due to the missing feedback loop.

Feedback-based control is necessary for beamline tasks
that need to evaluate a measure and act upon the result. In

tomographic environments, the control algorithms often re-
quire an image-based feedback, e.g. focusing, sample align-
ment, etc. This logic can be decoupled into image-based
metrics, control algorithms and feedback mechanisms.

We can find different metrics for diverse problems, or
even for a single one like focusing, where one can use
gradient information, variance or some other metric. Data
assessment based on such metric is then used by a control al-
gorithm which optimizes the parameters in order to achieve
better results. Computed parameters are then projected onto
the hardware by a high-level device API, which closes the
feedback loop.

For example, a simple focusing process is nothing else
but an optimization of a Parameter object (e.g. a motor
position) with respect to a measured value (e.g. a metric
denoting the sharpness of the current detector frame):

def measure ():

return np.std(detector.grab ())

def on_finish ()

detector.stop_recording ()

maximizer = Maximizer(motor[’position ’],

measure , bfgs)

detector.start_recording ()

f = maximizer.run()

f.add_done_callback(on_finish)

Although this is the most general way of focusing, Concert
also provides pre-defined process functions which encap-
sulate these processes and use default parameters for even
faster prototyping:

from concert.processes.alignment import *

f = focus(detector , motor)

Because of the asynchronous approach employed in Con-
cert, we are able to use the feedback loops in a continuous
mode, i.e. we do not have to wait for the above-mentioned
steps to finish one before each other, but let them run in
parallel.

Data Processing
Process abstractions can employ basic data processing

to enhance the control outcome (e.g. with NumPy). Up
to now, control and data processing are two independent
entities in control systems, with data processing commonly
moved to a later offline stage. However, to improve the
user’s beam time, it is necessary to analyze the results right
after or during the acquisition.

For this, we integrated our GPU-based data processing
framework UFO [5] within Concert. With this framework, a
user describes their processing workflow as a graph of pro-
cessing tasks. The result is the transformation of data going
from the roots to the leaves of the graph. The graph itself is
transformed before execution to utilize all processing units
(CPU cores, GPUs and remote nodes) as good as possible.

To integrate this framework in Concert, we used the pro-
cess abstraction described before and export scalar prop-
erties in the same way as device parameters but flagged

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC044

Experiment Control

ISBN 978-3-95450-139-7

663 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

with read-only status. Thus, a user can scan along a node’s
property “axis” to see the effects of a parameter change.

Session Management
User workflows center around the notion of a session.

Sessions encapsulate different types of experiments, de-
vices, data and processes associated with them. They can
be nested to build “inheritance” relationships between those
with common devices and processes. For example, one
would define a base session for the whole beam line that
contains every device that is installed. For each experiment,
the necessary devices and processes are imported.

APPLICATION
We employed Concert in a typical tomographic beamline

experiment to prove its versatility. In the following two
sections, we show how we used Concert to calibrate the
detector system and scanned a sample.

Pre-experiment Calibration
We have used Concert to focus a camera on the sample.

The scintillator was moved along the beam direction and
perpendicular to the focal plane with a linear motor. Based
on the standard deviation of the image, the optimization
process moved the motor towards or away from the sample
until the metric was maximized.

After focusing, we used Concert to align the axis of
rotation for the subsequent tomographic scan. An image
sequence of a rotated and off-centered reference sample
was recorded as shown in Fig. 2a. Reference points were
determined and fit to an ellipse which was then used to align
the center of rotation with the vertical axis, as shown in
Fig. 2b. All these steps were performed without any user
intervention by pre-defined Concert processes written in
less than 50 lines of code.

(a) The elliptic path is caused by
the misaligned axis.

(b) Aligned axis.

Figure 2: Result of rotation axis alignment.

High-speed Tomography Scan
We controlled a high-speed tomography experiment with

Concert and our high-speed detector system [6] to investi-
gate a living movement. The user only specified the desired
frame rate and number of acquired projections. From this in-
formation, functions implemented using Concert calculated
the required exposure time to avoid motion blur, opened

and closed shutters, moved the sample in and out of the
field of view, took dark and flat fields, scanned the sample
and initiated the flat field correction. Using the center of
rotation obtained from the calibration procedure before, we
reconstructed the volume shown in Fig. 3 using the UFO
framework and the filtered backprojection algorithm.

Figure 3: A projection and tomographic reconstruction of
Sitophius granarius.

CONCLUSION
In this paper we presented Concert, a high-level control

system that integrates TANGO, process control and data
processing within a simple Python interface. It is an open
source project hosted on GitHub

https://github.com/ufo-kit/concert

with up-to-date documentation at

https://concert.readthedocs.org.

Concert provides asynchronous, parallel operation and in-
tegration with our high performance computing framework
for low latencies as well high-level process abstractions for
rapid experiment development. In a complex beamline en-
vironment, Concert realizes smart instrumentation for fast
tomography and high data rates but still being compatible
with common beamline standards.

REFERENCES
[1] A. Götz, E. Taurel, J. Pons, P. Verdier, J. Chaize, J. Meyer,

F. Poncet, G. Heunen, E. Götz, A. Buteau, et al., “Tango a
corba based control system,” in ICALEPCS, 2003.

[2] L. R. Dalesio, M. Kraimer, and A. Kozubal, “Epics architec-
ture,” in ICALEPCS, vol. 91, pp. 92–15, 1991.

[3] “Sardana website.” www.tango-controls.org/static/

sardana/. Accessed: September 10th, 2013.
[4] K. Mader, F. Marone, C. Hintermüller, G. Mikuljan, A. Iseneg-

ger, and M. Stampanoni, “High-throughput full-automatic
synchrotron-based tomographic microscopy,” Journal of Syn-
chrotron Radiation, vol. 18, pp. 117–124, Mar 2011.

[5] M. Vogelgesang, S. Chilingaryan, T. d. S. Rolo, and A. Kop-
mann, “Ufo: A scalable gpu-based image processing frame-
work for on-line monitoring,” in Proceedings of The 14th IEEE
Conference on High Performance Computing and Communica-
tion & The 9th IEEE International Conference on Embedded
Software and Systems (HPCC-ICESS), HPCC ’12, pp. 824–
829, IEEE Computer Society, 6 2012.

[6] M. Caselle, S. Chilingaryan, A. Herth, A. Kopmann, U. Ste-
vanovic, M. Vogelgesang, M. Balzer, and M. Weber, “Ultrafast
streaming camera platform for scientific applications,” Nu-
clear Science, IEEE Transactions on, vol. PP, no. 99, p. in
print, 2013.

TUPPC044 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

664C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

