
A STATUS UPDATE ON HYPPIE: A HYPERVISORED PXI FOR PHYSICS 
INSTRUMENTATION UNDER EPICS 

James Rezende Piton1, Márcio Paduan Donadio2, Diego de Oliveira Omitto3 and Marco Antonio 
Raulik4, Beamline Software Group/LNLS, Caixa Postal 6192, Campinas – 13083-970, Brazil.

Abstract 
Brazilian Synchrotron Light Laboratory (LNLS) has a 

1.37 GeV source open to scientific community since 
1997. Since 2012 the control system of its beamlines, 
originally designed within a proprietary Delphi/Windows 
platform, is going through an upgrade to the open source 
EPICS/Linux platform. Within this upgrade strategy, the 
use of off-the-shelf hardware was also considered an 
alternative to the original in-house developed equipment, 
while keeping the EPICS/Linux compatibility. A PXI 
chassis and its modules were made available to EPICS 
through the NI Real-Time Hypervisor virtualization 
system that allows running simultaneously EPICS/Linux 
and LabVIEW Real-Time in the same PXI controller, 
sharing a common memory block as their communication 
interface. This data exchange protocol is called Hyppie. It 
is ready for some motor, scaler and binary in/out EPICS 
records and channel access in the Linux layer, leaving the 
low-level hardware control to the LabVIEW RT layer. 
Nine LNLS beamlines are presently running under this 
system and more beamlines will move to this in the 
months to come. 

INTRODUCTION 
Hyppie [1] is a project created by LNLS and National 

Instruments Brazil to make a bridge between EPICS 
records and corresponding devices in a PXI chassis. Real-
Time Hypervisor for Linux uses virtualization technology 
to run both Red Hat-based Linux and NI LabVIEW RT in 
parallel on multicore PXI controllers. I/O devices, RAM 
and CPU cores are partitioned between both OS. In 
Linux, IOCs device support is implemented and the 
communication with each device is done reading from 
and writing to the corresponding shared memory block, 
accessed simultaneously by VIs running in LabVIEW RT. 
The hardware was selected not only for the application 
requirements but also because there are offices and 
support from the manufacturer in Brazil, an important 
point for such a long-term decision. 

During the time schedule to move the LNLS beamlines 
into the new control system concept EPICS/Hyppie, 
additional features are being continuously included into 
the project, according to specific characteristics of each 
beamline. Priority is given to implementation which 
covers a larger number of beamlines with a given need or 
similar characteristics. 

This new approach of distributed control system for the 

LNLS beamlines opens new possibilities, like remote 
operation. 

HYPPIE SYSTEM 
Since its creation, Hyppie was conceived to enable 

faster development cycles and to bring new hardware 
interfaces available under EPICS. Some of those new 
hardware categories will be presented here. Presently, 
Hyppie supports EPICS binary-in/out, analog- in, scaler 
and motor records, Asyn driver and area detector. Nine 
beamlines were or are submitted to a refurbishment and 
are running with control hardware under EPICS through 
Hyppie: XAFS1 and XAFS2 (X-ray absorption 
spectroscopy), XRF (X-ray fluorescence), XRD1 (X-ray 
diffraction), SAXS1 and SAXS2 (small angle X-ray 
scattering), MX2 (macromolecular crystallography), 
PGM (ultra violet with a planar grating monochromator) 
and IMX (X-Ray tomography). There is a schedule for the 
remaining beamlines to move to this control system.  

Scaler Record 
A considerable amount of features has been added to 

the new Scaler Record in the Hyppie system. Core 
changes in the Real-Time software allowed the 
integration of signals read from different cards to be 
available in a same Scaler Record. It also made it possible 
to share the same signals for being integrated 
independently by two different PVs. A real-time 
embedded industrial controller was added to the system. 

The new structure of the Real-Time software has two 
layers. The first one acts as a hardware server and consists 
of LabVIEW VIs making the integration of the signals for 
each card. The integration is done every 1 ms. The result 
is published to the second layer. It consists of 2 LabVIEW 
VIs. Each VI provides the Scaler functionality to its 
respective Scaler Record through shared memory. The 
purpose of having 2 Scaler Records is to let one EPICS 
client operate the Scaler in autocount mode for checking 
the counting regardless of the experiment status. 

Futhermore, having different signal sources on different 
cards integrated in the same Scaler Record made it 
possible to use Gate Control (field Gn) between them. 
The same was not possible if these signals were read 
through different Scaler Records. It also improved trigger 
synchronization as it is now done in a lower level inside 
RT instead of sending the trigger for each PV through 
channel access. 

The current system supports a industrial chassis 
CompactRIO NI 9144, in which a 4-channel analog input 
module NI 9215 is being deployed. This new chassis is 
being installed inside the experimental hutch, reducing 
the size of signal cables and consequently reducing 

 ____________________________________________ 
1 james@lnls.br 
2 mdonadio@lnls.br 
3 diego.omitto@lnls.br 
4 raulik@lnls.br 

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC036

Experiment Control

ISBN 978-3-95450-139-7

635 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



eletromagnetic interference. The communication between 
PXI chassis and the CompactRIO is made using 
EtherCAT through a dedicated network card in the PXI. 
The four channels of the AD are sampled simultaneously 
at a rate of 100kS/s. This model of CompactRIO has an 
integrated FPGA, which does the sampling and applies a 
Butterworth low-pass filter to the signal before publishing 
it to the second layer of the scaler software in Real-Time. 

 
Serial Port Access 

Due to a Linux version limitation, it's not possible to 
access the PXI-8432/4 and PXI-8433/4 serial port boards 
using the Hypervisor system nowadays. On the other 
hand, it's very simple to use these boards in LabVIEW. It 
was needed a way to make the IOCs running in Linux 
access the serial boards in RT. The solution was to 
develop a driver using EPICS Asyn[2] structure, which 
was called Asyn Hyppie. 

Asyn is an EPICS driver that can access generic 
interfaces such as serial ports, GPIB ports, TCP/IP, etc[3]. 
It hides the complexity of the read/write/configure 
operations, transforming it in common C functions, 
independently of the interface type. 

In this case, the implemented driver access the shared 
memory between Linux and LabVIEW RT and sees it as 
an interface. To better comprehension, see the shared 
memory structure in table 1. 

 
Table 1: Allocation of 2328 bytes of shared memory for 
the Asyn Hyppie driver 

Field Description Read Write 

0 Command (1 byte) RT Linux 

1 Response (1 byte) Linux RT 

2 Asyn type (1 byte) RT Linux 

3 COM port (5 bytes) RT Linux 

4 Baud rate (4 bytes) RT Linux 

5 Data bits (2 bytes) RT Linux 

6 Stop bits (2 bytes) RT Linux 

7 Parity (1 byte) RT Linux 

8 Flow control (1 byte) RT Linux 

9 Timeout (4 bytes) RT Linux 

10 Read buffer data size  
(4 bytes) 

Linux RT 

11 Read buffer (1020 bytes) Linux RT 

12 Write buffer data size  
(4 bytes) 

RT Linux 

13 Write buffer (1020 bytes) RT Linux 

 
The listed fields in the table are expected as follows:

  

Command: can be values meaning “Configure Serial 
Port”, “Close Connection”, “Write to Serial Port”, “Read 
from Serial Port” or “Flush Serial Buffers”. 

Response: used to report errors to the IOC. 
Asyn type: 0 for RS 232 or 1 for RS 485. 
COM port: a text like “COM2”, “COM6”, “COM20”, 

indicating the used PXI COM port. 
Baud rate: a number with the baud rate value. 
Data bits: a number with the amount of data bits. 
Stop bits:  

 10 for 1 stop bit,  
 15 for 1.5 stop bit and  
 20 for 2 stop bits. 

Parity:  
 0 for none,  
 1 for odd,  
 2 for even,  
 3 for mark and  
 4 for space 

Flow control:  
 0 for none,  
 1 for XON/XOFF,  
 2 for RTS/CTS,  
 3 for XON/XOFF and RTS/CTS,  
 4 for DTR/DSR,  
 5 for XON/XOFF and DTR/DSR 

Timeout: time, in milliseconds to wait for data 
Read buffer data size: VI in LabVIEW informs the 

IOC how many bytes are available to read from the read 
buffer 

Read buffer: raw data read from the serial port 
Write buffer data size: the IOC informs the VI in 

LabVIEW the number of bytes available to write from the 
write buffer 

Write buffer: raw data that must be sent to the serial 
port 

 
GigE Vision and Firewire Cameras 

Cameras are a new Hyppie resource, due to the use of 
those devices at some beamlines in LNLS, especially at 
IMX (X-Ray tomography) beamline.  The support for the 
IEEE-1394 (firewire) and GigE Vision standards in the 
corresponding National Instruments software library for 
image processing led to a structure of shared memory 
registers in Hyppie to cover both types of camera, 
provided that the gigabit specifications match those of 
AIA (Automated Imaging Association). The use of this 
resource has been thoroughly tested during the 
comissioning of a microfocus KB mirror system in the 
XRF beamline, where one Allied Vision Technologies 
firewire camera model F-146B is used in tests.  

As the Real-Time system should not be occupied by file 
outputs, the TIFF image is transferred to the IOC in the 
Linux side, which performs the writing to a storage 
system. A large number of functions in the corresponding 
LabVIEW image processing library is available in the 
real-time side. Thus, some calculation on the beam image 
is an additional feature, performed at a high rate. 

TUPPC036 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

636C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control



The parameters and data in the shared memory are 
shown in Table 2. 

 
Table 2: Allocation of 6 Mbytes of Shared Memory for the 
Camera Hyppie Driver 

Field Description Read Write 

0 Watchdog (4 bytes) Linux RT 

1 Acquire (1 byte) both both 

2 Number of images  
(4 bytes) 

RT Linux 

3 X offset (4 bytes) RT Linux 

4 Y offset (4 bytes) RT Linux 

5 Width (4 bytes) RT Linux 

6 Height (4 bytes) RT Linux 

7 Command for the camera  
(128 bytes) RT Linux 

8 Response from the camera 
(128 bytes) Linux RT 

9 File ready (1 byte) both both 

10 Image number (4 bytes) Linux RT 

11 File size (4 bytes) Linux RT 

12 Gain (4 bytes) RT Linux 

13 Centroid X (4 bytes) Linux RT 

14 Centroid Y (4 bytes) Linux RT 

15 X-profile center (4 bytes) Linux RT 

16 X-profile amplitude 
(4 bytes) Linux RT 

17 X-profile FWHM 
(4 bytes) Linux RT 

15 Y-profile center (4 bytes) Linux RT 

16 Y-profile amplitude  
(4 bytes) Linux RT 

17 Y-profile FWHM 
(4 bytes) Linux RT 

18 Turn on/off profile 
calculation RT Linux 

19 X-profile array 
(18 Kbytes) Linux RT 

20 Y-profile array (18 Kbytes) Linux RT 

21 Image file bytes  
(> 5Mbytes) Linux RT 

 
In a future version, more PVs will be created to extend 

the configurable parameters and the IOC will be modified 
to exploit EPICS areaDetector features like NeXus 
plugins. Also, a configuration database will be created to 
allow a simple way of adding new camera models, as 

different models of a manufacturer can have different 
commands for the same function. 

 

CONCLUSION 
Through Hyppie a number of PXI instrumentation 

modules got available to LNLS, as PXI is a standard 
common to a variety of manufacturers. Also, Hyppie 
improved the process of getting EPICS as the base of a 
new distributed control system. The benefits range from 
the ease of programming (LabVIEW) to the reusing of 
libraries provided by the hardware vendors. New 
implementation has been done to include more features. 
To bring more people into the development of solutions 
for the beamlines and meeting the needs, training on 
EPICS, Python and CSS has been provided to the 
technical staff at the beamlines. Documentation on this 
open-source project is located at 
http://lnls.cnpem.br/sol/hyppie 

REFERENCES 
[1] J. R. Piton et al., “Hyppie: A hypervisored PXI for physics 

instrumentation under EPICS”, BIW 2012, Newport News, 
MOPG031.  

[2] M. Kraimer., E. W. Norum, M. Rivers, “asynDriver: 
Asynchronous Driver Support”, April 1, 2010 

[3]  E. W. Norum., “How to create EPICS device support for a 
simple serial or GPIB device”, April 12, 2010. 

 

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC036

Experiment Control

ISBN 978-3-95450-139-7

637 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


