
CONCEPT AND PROTOTYPE FOR A DISTRIBUTED ANALYSIS
FRAMEWORK FOR THE LHC MACHINE DATA

K. Fuchsberger, J.C. Garnier, A.A. Gorzawski, E. Motesnitsalis, CERN, Geneva, Switzerland

Abstract
The Large Hadron Collider (LHC) at CERN produces

more than 50 TB of diagnostic data every year, shared be-
tween normal running periods as well as commissioning
periods. The data is collected in different systems, such
as the LHC Post Mortem System (PM), the LHC Logging
Database and different file catalogs. To analyze and corre-
late data from these systems it is necessary to extract data
to a local workspace and to use scripts to obtain and cor-
relate the required information. Since the amount of data
can be huge (depending on the task to be achieved) this ap-
proach can be very inefficient. To cope with this problem, a
new project was launched to bring the analysis closer to the
data itself. This paper describes the concepts and the imple-
mentation of the first prototype of an extensible framework,
which will allow integrating all the existing data sources as
well as future extensions, like hadoop clusters or other par-
allelization frameworks.

MOTIVATION
Next to the physics data, which is collected by the exper-

iments and analyzed by computing centers which are dis-
tributed around the world, the LHC also produces a large
amount of diagnostics data. This data is used for online
diagnosis and systematic performance analysis and thus is
critical for the efficient and secure operation of the acceler-
ator. While the amount of this data (in the range of 50 TB
per year) is far less than the aforementioned physics data,
it is already in a range where naive usage of scripts and
simple applications reach their limits due to data I/O lim-
itations and memory consumption. At the time of writing
relevant data is mainly stored in two main systems, depend-
ing on the nature of the data:

• LHC Post Mortem System (PM): This system stores
data at a high resolution over short time ranges. The
collection mechanism is event based: Triggered by a
timing event, different equipment sends data to a cen-
tral server (PM server). The server collects all the data
and groups them into events. The main purpose of the
PM system is to collect data after failures (e.g. a beam
abort or a power abort of an electrical circuit) and to
store and analyze the data for later diagnosis.

• Common Accelerator Logging Service (CALS):
CALS provides continuous logging of equipment sig-
nals all around the LHC. The logging frequency is de-
fined per equipment and/or signal type and is typically
much slower than for the PM system. The CALS pro-
vides the main source for systematic performance and
trend analysis.

Besides these two systems, there are other custom made
logging mechanisms which mostly write to files in propri-
etary formats (E.g.: Orbit data or Tune spectra). While the
two main systems (PM and CALS) both provide a Java Ap-
plication Programming Interface (API) to access the data,
this is not the case for most of the dedicated file formats.
Even with the available java APIs systematic analysis of
data from different sources is complicated, when it comes
to correlation and alignment between different datasources,
since this responsibility is completely left to the user of the
data.

Another limitation is that data extraction is time con-
suming, since all the data has to be transported over the
network. This is very often circumvented by users by ex-
tracting the data once and then storing it to (custom) files
stored locally on their computers, which then are read for
subsequent analysis. This produces a large amount of re-
dundant data in diverse formats, with all the problems of
storage space and backups.

These facts, together with the high rate of code duplica-
tion resulting from the various analysis implementations,
are the main arguments which emphasize the need for a
common solution for the analysis of this data.

REQUIREMENTS
The problems outlined in the previous section, led to the

following requirements for a common analysis framework:

• Calculations close to the data: This avoids trans-
port of huge amounts of data and allows optimizations
based on the nature of the data.

• Horizontal Scalability: The system should be able to
grow with the amount of data and the amount of users.

Out of further considerations, the framework should also
handle the following situations in a consistent way:

• Data incompleteness: The data might be incomplete
or the metadata might change over time: As an ex-
ample, lets consider a vector of beam positions (or-
bit) around the LHC ring. This vector consists of one
value per beam position monitor (BPM). If we would,
for example, take the difference of an orbit at a given
time and an orbit from a previous year, it might hap-
pen that a BPM was removed or added. Therefore,
a blind subtraction of the two vectors (by index) can
lead to totally wrong results. Although this problem
appears in almost all the data, everyone who has to do
some analysis has to take care of these specialties on
their own, because no generic solution is in place.

TUPPC026 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

604C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

• Data invalidity: Even if there were values recorded
for certain signals, it might be that some of these val-
ues are meaningless (If we consider again e.g. orbit
data, it could well be that BPMs deliver some values,
although there is no beam in the machine). To diag-
nose and handle such specialties, usually considerable
domain knowledge is required. And again, the treat-
ment of such cases in subsequent calculations is left
to each user, which easily leads to code duplications.

• Mathematical operations: Most of the calculations
that have to be performed on data, are similar to each
other and are mostly of a statistical nature (E.g. av-
erage over time, subtraction, scaling). Again, users of
the data are re-implementing such operations over and
over which leads to a lot of code duplication and is an
error prone process. Furthermore some of these oper-
ations produce only a few values as a result, while they
require a huge amount of data to be extracted from the
storage system, which is a time consuming operation
as mentioned before.

• Physical units: For many different reasons (effi-
ciency, signal resolution), signal values of different
systems are stored in many different units on the stor-
age layer (PM, CALS). When using the data in analy-
sis, the user has to be very careful to perform the cor-
rect conversions at the right moment, when e.g. cor-
relating data from one system with data from another
system.

• Error propagation: Error estimation of results from
a chain of numerical operations is a nontrivial task
which is currently left to the user. This results in
inconsistent treatment of errors and makes it hard to
compare different analysis, although a standard strat-
egy could be provided at least for the most common
operations.

The vision for such an analysis framework emerged
from the development of a system for automatic analysis
of test data resulting from LHC hardware commissioning
tests [1, 2]. Although the development was done with this
framework in mind, the design decisions always took fur-
ther usage and extensibility into account.

OVERVIEW
The simplified architecture of the analysis framework

is depicted in Fig. 1. Users can interact with the frame-
work by the use of a Java API which is implemented in the
form of an embedded domain specific language (eDSL) [3],
which limits the functionality provided to the user to the
actually available functionality.

This language produces a tree of expressions which is
then sent to the execution framework. This approach com-
pletely de-couples the description of the analysis from the
execution part and provides the necessary flexibility to
change implementation parts later, if required. The exe-
cution framework itself can be run on a dedicated server or
alternatively embedded in another server or application and

will be the main focus of the subsequent sections.

Figure 1: Overview of the Framework Architecture.

EXECUTION FRAMEWORK
Due to the complete disentanglement of the analysis lan-

guage from the execution layer, as described in the previous
section, it is possible to provide a very flexible and modular
layer of execution. This was a deliberate choice in our de-
sign since it provides us with the possibility to start off with
a very simple, but not optimized solution, and later slowly
optimize the execution without any impact on the language
level. Further, the chosen concept allows plugging different
data sources and/or processing engines into the system.

To illustrate the basic concepts in some detail, we will
consider the (simplified) example as shown in listing 1.

Listing 1: Simple Assertion

assertThat(I_MEAS).isLessThan(55.0,
AMPERE).at(PM_EVENT_TRIGGER);

The code in this example will instruct the analysis
framework to check, if the signal (I_MEAS) is less than
55.0 amperes, at a certain point in time (denoted by
PM_EVENT_TRIGGER) and to return the result. The code is
translated into a tree of expression objects, similar to the
one shown in Fig. 2.

As illustrated in this figure, some of the nodes of the pro-
duced tree already contain all of the necessary information
(Nodes D, E and F). We call those nodes ’resolved nodes’.
For other nodes (which we call ’unresolved nodes’) the re-
sult still has to be calculated (Nodes A, B and C). The goal
for the evaluation of an expression is to resolve all nodes
of such a tree until the root node (the Assertion node in the
example) is resolved. In the simplest possible version of an

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC026

Data Management and Processing

ISBN 978-3-95450-139-7

605 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 2: Expression tree created from listing 1. Characters
in square brackets ([]) are labels for the nodes; blue nodes
are already resolved ones (values known); green ones are
unresolved (to be calculated).

execution framework, each unresolved node could be re-
solved as soon as all of its children are resolved. In the ini-
tial state of the example as depicted in Fig. 2, node C could
be resolved by this method, while node B could not (yet).
In the current implementation of the execution framework
the resolving mechanism is a little bit more complicated, as
described in the following:

The relations between the main components (Java ob-
jects) of the framework that are involved in this resolving-
process are shown in Fig. 3.

Figure 3: Relations of components involved in the resolv-
ing process (simplified).

The component which orchestrates the resolving pro-
cess is the so-called Dispatcher. It uses a set of
ResolverModules. Each of them provides a set of
Resolvers. A resolver is a class which implements a sim-
ple interface: it has one invoke(..) method which takes
an unresolved node as an argument and returns a resolved

one. Optionally, it can have a canInvoke(..) method with
the same argument. The algorithm, which is implemented
in the dispatcher is basically the following (characters A to
F refer to the nodes of the example):

1. Starting from the root node (A), the dispatcher queries
each of the resolvers if it can resolve the given node
(with the current state of the tree). A resolver can re-
solve a given node,

• if the signature of the invoke(..) method
matches the node to resolve

• and if the canInvoke(..) method returns true

for the node (if such a method exists).

2. If a resolver can resolve the given node, then the dis-
patcher remembers this resolver in a list for each node
as a potential candidate and continues checking all the
other resolvers.

3. If none of the resolvers can resolve the node, then
the same procedure is recursively invoked with all the
children of the node (e.g. node B in the example).

4. Else (if at least one potential candidate resolver is
found for the node), the dispatcher stops the iteration
through the tree in this branch and does not try to re-
solve the child nodes anymore (in the initial state of
the example, this would happen for node C).

5. As soon as the iterations through all branches are fin-
ished (no more resolvers can be found, which could
resolve nodes from the current tree state), the dis-
patcher selects one of the candidate resolvers per node
(in the simplest implementation the first one), invokes
it and rebuilds the tree with the resolved node.

6. After all resolvers return, the whole algorithm is
looped starting at item (1), until all nodes (including
the root node) are resolved.

The main advantage of this algorithm, compared to a sim-
ple bottom-up resolving, is that it is easy to add new re-
solvers. For example, a resolver could be added, that re-
solves a node which still contains some unresolved children
(i.e. resolves a whole sub-tree without the need to resolve
the bottom nodes). In our example this could be a resolver
which performs the less-than operation for certain signals
directly in the database without the need to extract the sig-
nal values (which might be much faster, since no data has
to be extracted at all). The algorithm would automatically
select the new resolver for those signals, as soon as it would
be plugged into the system.

This current implementation is purely serial and has a lot
of potential for improvements:

• The invocation of the resolvers (5) could be easily
done in parallel.

• The selection of the candidate resolver for a node, that
in the end will be invoked, could be fine-tuned. For
example, some machine-learning algorithm could be
put in place, which selects a fast candidate based on
experience from invocations on ’similar’ nodes.

TUPPC026 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

606C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

• Currently, no caching is in place. Thus, if the same
node appears in different expressions, it will be re-
evaluated each time. This could be easily avoided by
some caching mechanism.

PARALLELIZATION
As mentioned in the previous section, one obvious way

to optimize the analysis is parallelization. For the longer
term, an approach has to be found which scales horizon-
tally, as soon as the needs and the load on the analysis
framework would grow. At a first glance, a map-reduce
approach as provided e.g. by hadoop [4] looked promising.
Nevertheless, due to the strong focus on data stored in files
this approach turned out less effective as expected because
of the following reasons:

• None of the currently available data is available in a
useful file format for hadoop: PM stores its data in
a custom file format and CALS keeps the data in a
relational database.

• The data volume for our intermediate results (results
of individual nodes) are relatively small and the I/O
to files would be an overhead. This argues for a more
flexible solution, where data is kept in memory.

The usage of a hadoop cluster is not at all excluded for
the future (nothing argues against adding resolvers that are
based on hadoop map-reduce at a later stage, if we see
an advantage). This could be useful in the near future, as
the serialization format of the PM system will be migrated
soon to Apache Avro, which is a splittable, hadoop com-
patible format.

Having the dispatching mechanism in mind, as described
in the previous section, another parallelization approach
appeared to be a better match: Akka [5], which is an ac-
tor based system for Java and Scala. The idea was, that
if we would implement the dispatching mechanism in the
akka way, the process could be easily scaled to a cluster, if
necessary. To test this theory, a small student project was
launched: The goal was to port an already existing algo-
rithm (purely Java) for the search of so-called ’Unidenti-
fied Falling Objects’ (UFOs) to a version using akka [6].
The result was very promising. Within a few days it was
possible to create a version of the algorithm, which scales
natively to as many cluster nodes as desired and proved
to give a performance increase by a factor of 20, although
all cluster node instances were still run on the same ma-
chine, as illustrated in Fig. 4. This enormous gain was only
possible because the CALS started supporting parallel data
extraction. After this result, the next steps will be to verify
the results on a small cluster using multiple nodes and later
to replace the current dispatcher with a version using akka
and evaluate the limits of the parallel data extraction.

CONCLUSION AND OUTLOOK
We outlined the main motivation for a central analy-

sis framework for accelerator machine data at CERN and

Figure 4: Execution times of the parallelized algorithm (us-
ing akka) for UFO search compared to the completely se-
rial approach. The x-axis represents the amount of data
analyzed in hours of logged data. The vertical axis rep-
resents execution times of the search algorithm in seconds
(Courtesy of E. Motesnitsalis).

proposed solutions for different aspects of it. All these
proposals were backed by experience from working pro-
totypes produced as parts of other applications in the previ-
ous years. It looks very promising to finally combine all the
mentioned concepts to establish a first version of such an
analysis framework with additional added values like do-
main objects and a strongly typed analysis language with
parallelized execution. Still, our minds have to be kept
open for better solutions. However, such changes will be
easy to integrate if necessary, due to the strongly layered
and modular design of the proposed approach.

ACKNOWLEDGEMENTS
The authors want to thank the members of the TE-MPE-

MS software team for their marvelous work and the mem-
bers of the BE-CO-DA section for all their help and coop-
eration. Special thanks goes to L. Burdzanowski, C. Roder-
ick and M. Sobieszek for their work on CALS (especially
for the parallel data extraction feature) and V. Baggiolini
for his continuous feedback and support.

REFERENCES
[1] K. Fuchsberger et al., “Automated Execution and Tracking

of the LHC Commissioning Tests”, proc. of IPAC12, New
Orleans, LA, USA.

[2] D. Anderson et al., “The AccTesting Framework: An Exten-
sible Framework for Accelerator Commissioning and Sys-
tematic Testing”, THPPC0788 7 8 7

[3] D. Andersen et al., “Using a Java Embedded DSL for LHC
Test Analysis”87 , , proc. of ICALEPCS 2013.

[4] http://hadoop.apache.org

[5] http://akka.io

[6] E. Motesnitsalis, “Using Akka Platform in Unidentified
Falling Object Detection on the LHC”, CERN TE Notes,
CERN, Geneva, 2013.

, proc. of ICALEPCS 2013.

THPPC079

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC026

Data Management and Processing

ISBN 978-3-95450-139-7

607 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

