
RASHPA: A DATA ACQUISITION FRAMEWORK FOR 2D X-RAY
DETECTORS

F. Le Mentec, P. Fajardo, T. Le Caër, C. Hervé, A. Homs
ESRF 6 Rue Jules Horowitz, 38000 Grenoble, France

Abstract

As last generation X-ray detectors are capable of pro-
ducing very high data rates in the range of 1 to 100
GBytes/second, the implementation of high throughput
data acquisition systems is essential for the efficient use of
those data streams at high brilliance synchrotron radiation
facilities. This paper introduces RASHPA, a data acqui-
sition framework optimised for 2D X-ray detectors suffi-
ciently generic and scalable to be used in a large diversity
of new high performance detector developments. the pa-
per describes the basics of the conceptual design as well as
the scheme chosen by the ESRF for the first demonstrators
that combines a highly configurable multi link PCI Express
over cable based data transmission engine with a carefully
designed LINUX software stack.

INTRODUCTION

RASHPA is a data acquisition framework for X-ray 2D
detectors currently under development at the European
Synchrotron Radiation Facility that aims at standardizing
the data transmission pipeline from the detector up to the
software application for further processing, visualization or
storage. From the perspective of this work, a 2D detector is
considered to be a device segmented in an arbitrary number
of detector modules that operate and transfer data in paral-
lel. Each module includes a data acquisition controller, re-
ferred as RASHPA controller, that is in charge of pushing
the data into the address space of the backend computing
infrastructure.

As a framework, RASHPA consists of a specification
defining the functional concepts as well as the hardware
and software interfaces, and a middleware running on the
backend computers that is fully generic and independent of
the detector. For its practical implementation, the ESRF
is also developing a set of hardware blocks that allows to
build and integrate the RASHPA controllers in the detector
hardware in conformity with the specification.

In this article, we first introduce some basic considera-
tions about technology choices, then we present the frame-
work design and finally, we give some details of the proto-
type implementation currently under development. For the
sake of simplicity and unless it is explicitly mentioned, the
rest of this paper refers to a basic configuration in which
the detector is made of a single module, and therefore it in-
cludes only one RASHPA controller. In the same way, the
backend infrastructure is also simplified and consists of a
single computer referred as ”workstation”.

TECHNOLOGICAL CONSIDERATIONS
Zero-copy Memory Transfer

A fundamental goal of the project is to achieve zero-copy
memory transfers: data are pushed by the RASHPA con-
troller from the detector memory directly into the destina-
tion applicative buffers without intervention of the backend
workstation CPUs. Furthermore, the middleware makes
it possible for the application to exploit the workstation
platform capabilities, such as NUMA factors and CPU
affinities. By eliminating intermediate memory copies and
enabling smart data placement policies, RASHPA allows
for an efficient use of the workstation memory subsystem.
Such considerations are especially important in the context
of high performance computing systems [1].

Choice of the Data Transport Layer
While it requires a direct memory access capable trans-

port layer, RASHPA is not tied to a specific one. However
for the first implementations an important design choice
has been the selection of PCI Express over cable [2]. From
a strictly functional point of view this is an ideal option due
to:

• reliability: PCIe has built in support for both control
flow, data integrity and packet ordering. This removes
the needs for additional protocol layers,

• scalability: a single point to point link is built upon
one or more dynamically negotiated lanes. Different
bandwidth requirements can thus be addressed by ad-
justing the lane count, which makes RASHPA auto-
matically spans a wide range of detector bandwidth
requirements,

• low latency: while RASHPA primary targets high
throughput data transfers, PCIe supports low latency
word based read and write operations. It includes in-
terrupts (so called MSIs), which is particularly inter-
esting as the middleware is largely event based,

• native integration: over the years, PCIe has become
the default peripheral interconnect of x86 based plat-
forms. As a part of this interconnect, there is no added
overhead for a RASHPA based detector to communi-
cate with the workstation CPU, memory or other PCIe
endpoints.

Despite these benefits, the limited availability of PCIe
over cable products and the lack of standardization of opti-
cal cabling form factor is still an issue. The current speci-
fication [3] only addresses copper cabling which limits the

TUMIB07 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

536C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technology



Figure 1: Architecture of a basic RASHPA system.

link length to a few meters and becomes cumbersome as
the lane count increases. Third party solutions based on
optical fiber exist today [4], but the convenience of relying
RASHPA implementations on PCIe in the future will very
much depend on the practical availability of off-the-shelf
PCIe over cable products. If proven wrong, and given that
RASHPA does not fix a specific transport layer, it would
be possible to replace it in our current prototypes without
a major redesign of the architecture. For instance, we are
investigating 10GbE as a replacement and have already a
basic working implementation.

Foreseen Technological Integration
To reach peak performances, a general trend in both

computing and storage technology areas is to decrease de-
vice access related overheads. For instance, NVIDIA is
running the GPUDirect initiative, that allows a third party
device to address directly a GPU memory. A similar ap-
proach exists for disk storage: backed by influential actors
such as Intel and Oracle, NVM Express allows accessing
solid state drives through an optimized PCIe interface. The
emergence of these promising technologies can be seen as
an additional motivation to build RASHPA PCIe based con-
trollers, as coming generations of systems would be poten-
tially able of transferring data directly from the detector to
disk or to GPU coprocessors for on-the-fly data analysis.

FRAMEWORK DESIGN

Overview
Figure 1 is a conceptual diagram of how the RASHPA

framework fits the data transmission pipeline of a basic de-
tector system consisting of a unique detector module and
a single backend workstation. From a hardware point of
view, the RASHPA controller consists of a specific logic in-
terfacing the detector readout electronics as well as a set of
hardware blocks handling data transmission. The RASHPA
specification defines the functionality of these blocks that

can be seen as a default implementation. The main compo-
nents are:

• a scheduler in charge of generating and dispatching
memory transfer requests,

• engines to access workstation memory,

• an embedded CPU in charge of handling configuration
and control requests from the workstation.

RASHPA also defines and implement a middleware on
the workstation that initialises and manages the data trans-
fer process and provides a standard programming interface
to client applications.

Detector Readout Logic
Since the framework aims at being detector agnostic, few

assumptions are made on interfacing the RASHPA con-
troller with the detector specific electronics:

• RASHPA expects images resulting from the detector
front-end to be built into intermediate working memo-
ries before data can be sent to the workstation. These
memories can be either randomly (BRAM, DDR) or
FIFO addressable,

• an implementation for driving the detector readout ex-
ists and must share the same FPGA as the RASHPA
memory transfer scheduler. As acquisition progresses,
this logic informs RASHPA about data availability
(memory identifier, offset and size), through a proto-
col defined in the RASHPA specification.

Memory Transfer Scheduler
The memory transfer scheduler generates contiguous

memory block transfer requests as data become available
from the detector. A single request contains the following
information:

• an address identifying the block working memory and
the starting offset,

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUMIB07

Hardware Technology

ISBN 978-3-95450-139-7

537 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 2: Structure of the RASHPA middleware.

• the workstation destination address,

• the block size,

• data transport layer specific informations.

The request is passed to the memory access engine. If the
memory access engine is implemented on multiple FPGAs,
the scheduler selects the appropriate one according to the
destination address and simple load balancing policies.

Memory Access Engine
The memory access engine is in charge of transmitting

contiguous memory blocks from the detector to the work-
station memory. All the required information come from
the memory block scheduler requests.

Conceptually, there is only one memory access engine.
In simple designs, the memory access engine can eventu-
ally share the same FPGA as the transfer scheduler. How-
ever, achieving high bandwidth requires to aggregate mul-
tiple data transport links and thus, implement the memory
access engine on several FPGAs.

Configuration and Control CPU
For increased flexibility, the RASHPA hardware embeds

a CPU running a daemon on top of a full featured LINUX
operating system. The daemon listens for incoming con-
figuration and control requests from the workstation mid-
dleware. The requests are translated to low level registers
accesses over an internal dedicated PCIe link that connects
the CPU to the RASHPA hardware. The communication
between the embedded CPU and the workstation can either
use a TCP based connection or the PCIe downstream data
link.

Workstation Middleware
The workstation middleware is in charge of providing

client application with data transmission services through

a well defined application programming interface (API).
It targets LINUX based platforms. A typical client is the
LIMA data acquisition and detector control library widely
used at ESRF and other synchrotron radiation facilities [5].
The middleware layers are depicted in Figure 2:

• configuration: this layer is in charge of building a de-
scription so that the hardware knows how, when and
where to transmit data. For instance, it includes the
workstation memory buffer addresses. This descrip-
tion is implemented as a file whose structure follows
an XML dialect defined by the RASHPA specifica-
tion. This file is sent to the detector embedded CPU
over the configuration link. The CPU interprets this
information to configure and initialize the hardware,

• device abstraction: the RASHPA hardware may con-
sist of one or more PCIe endpoints. Moreover, we
mentioned that PCIe may eventually get replaced by
another technology with different hardware capabili-
ties (interrupts ...). Thus, the device abstraction layer
hides low level details and provides the software with
a generic interface to access the underlying devices.
While most of the layer is implemented in user space,
special operations such as interrupt handling require a
thin driver,

• memory management: zero copy memory transfers re-
quire to work with the workstation physical address
space. However, typical client application buffers are
allocated in the process virtual address space. The
middleware thus provides a virtual memory allocator
on top of an internally managed physical memory al-
locator. If applicable, this allocator is NUMA aware
and allows for efficient memory placement,

• unified event model: there are multiple sources of
events that would make sequential programming dif-
ficult. For instance, data transmission completion is

TUMIB07 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

538C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technology



sent by the detector using an interrupt along with aux-
iliary data; LINUX informs about PCIe device adding
or removal using system notifications; Timers and
callbacks may be registered by the client application
itself. For these reasons, the middleware program-
ming model is largely event based and provides with
software abstractions that unify the different event
sources.

FIRST PROTOTYPE

Figure 3: Prototyping platform.

A prototype is currently under development to imple-
ment and validate various aspects of the RASHPA frame-
work. The hardware setup is shown in Figure 3 and consists
of a detector module emulator connected to a workstation
by a single data link. The data link uses a PCIe cabling
expansion kit from One Stop Systems [6] connected to the
workstation root complex that allows for a Gen2 x4 PCIe
setup, giving an effective throughput of 2 GB/s. The same
manufacturer provides today kits for PCIe Gen3 x16.

The detector module emulator is built around a KC705
Xilinx development board [7], which features a Kintex 7
FPGA, 1GB DDR3 memory and a PCIe x8 connector. The
FPGA design relies on EBONE [8], a general purpose in-
terconnect developed at the ESRF.

The workstation is an Intel 64 bits quad core i7 based
platform installed with LINUX and the RASHPA software.

Benchmarking this prototype pointed an effective data
transfer rate of 1GB/s, half the theoretical effective band-
width. These results are encouraging, as they confirm that a
performant implementation of the RASHPA flexible design
can be made. Optimization areas have already been spot in
the implementation to increase the bandwidth, which do
not impact the RASHPA design.

ACKNOWLEDGEMENTS
A relevant part of this work is carried withing the

CRISP EU project of the 7th Framework Programme
(http://www.crisp-fp7.eu).

CONCLUSION
This paper presented the design of the RASHPA acqui-

sition framework. Directions enabling both performance
and flexibility are now established, and development of the
first prototype is currently in progress. ESRF research pro-
grams and the accelerator upgrade second phase will soon
allow to refine and validate the framework against real ap-
plications.

REFERENCES
[1] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B.

Lepers, V. Quema, M. Roth, “A Holistic Approach to Mem-
ory Placement on NUMA Systems”.

[2] PCI Express Special Interest Group, http://www.pcisig.
com/specifications/pciexpress

[3] PCI Express External Cabling 1.0 Specification, http:

//www.pcisig.com/specifications/pciexpress/

pcie_cabling1.0

[4] PLX Technology and Avago Technologies, “A Demonstration
of PCI Express Generation 3 over Fiber Optical Link”.

[5] A. Homs, L. Claustre, A. Kirov, E. Papillon, S. Petitdemange,
“LIMA: A Generic Library for High Throughput Image Ac-
quisition”.

[6] One Stop Systems PCIe expansion kits, http://www.

onestopsystems.com

[7] Xilinx KC705 development kit, http://www.xilinx.com

[8] ESRF Electronic Unit, EBONE OHR repository, http://
www.ohwr.org/projects/e-bone

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUMIB07

Hardware Technology

ISBN 978-3-95450-139-7

539 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


