
NEXT-GENERATION MADOCA FOR THE SPRING-8 CONTROL
FRAMEWORK

T. Matsumoto#, Y. Furukawa, M. Ishii, JASRI/SPring-8, Hyogo, Japan

Abstract
Message and Database Oriented Control Architecture

(MADOCA) was originally developed at SPring-8; since
1997, it has been successfully utilized for control systems
at SPring-8 and other accelerator facilities. Despite the
successful implementation of MADOCA, several
problems arose during the course of its application. For
example, we need to treat data, including image data
obtained by beam profile monitoring, and control specific
devices that can be only managed by Windows drivers;
these requirements cannot be fully met by MADOCA.
Hence, we developed a next-generation MADOCA
control framework, called MADOCA II, which is also
based on a message-oriented control scheme as in of
MADOCA. However, the core part of the messaging
scheme is completely rewritten using ZeroMQ socket
library, thereby greatly improving the feasibilities. Here,
we report on MADOCA II from the viewpoint of
messaging. We confirmed the stability of MADOCA II at
BL36XU beamline after one-year operation. Several new
applications with MADOCA II are being implemented at
SPring-8.

INTRODUCTION
The Message and Database Oriented Control

Architecture (MADOCA) control framework was
originally developed at SPring-8 for the control systems
of SPring-8 accelerators and beamlines and has been
utilized since 1997 [1]. MADOCA is also adopted for
control systems in other accelerator facilities such as
HiSOR, NewSUBARU, and SACLA. At SACLA,
MADOCA is applied to experimental station controls as
well as accelerator and beamline controls.

However, MADOCA had a few shortcomings, and
hence, we developed a new framework, next-generation
MADOCA (MADOCA II), with the perspective of
accommodating future upgrades in our control systems.
The software framework of MADOCA II comprises
messaging and data logging. In this paper, we describe
MADOCA II from the perspective of messaging. The data
logging aspects of MADOCA II is described in another
paper [2].

The following functionalities were newly implemented
in MADOCA II for improving messaging flexibilities.

1. Messaging data with variable lengths.
2. Controls in a Windows environment.
3. Asynchronous communication between operator

workstations and front-end computers.

These functionalities are important to realize flexible
control systems. For example, messaging data of variable
lengths is necessary since data of various formats such as
waveform and image data are usually used for beam
monitoring. Further, since we sometimes need to treat
specific equipment that can be only controlled by
Windows drivers, it is necessary to implement controls in
a Windows environment. Asynchronous communication
is important for handling multiple controls
simultaneously; however, it is not fully implemented in
current MADOCA. Therefore, improvements in this
regard are required.

MADOCA AND ITS SHORTCOMINGS
MADOCA is based on client/server control architecture,

as seen in Figure 1, and messages are communicated
between operator workstations and front-end computers.
The framework consists of the Message Server (MS),
Access Server (AS), and Equipment Manager (EM). The
middleware of messaging utilizes System V Inter Process
Communication (IPC) and Open Network Computing
Remote Procedure Call (ONC/RPC).

Messages in MADOCA are based on text and are
composed of a character string with S/V/O/C syntax—for
example,
“123_matumot_oprgui_opcon01/get/sr_mag_ps_b/current
.” S/V/O/C stands for subject (S), verb (V), object (O) and
complement (C). In the above example, “get” (V)
represents the control action; “sr_mag_ps_B” (O)
represents the equipment to be controlled; “current” (C)
represents the value to describe the contents of the action.
The subject (S) is composed of the process number,
application name, account name, and the hostname, and is
assigned by the MADOCA framework itself. The message
is sent from a Graphical User Interface (GUI); the
response is obtained from EM, and reads as
“sr_mag_ps_b/get/123_matumot_oprgui_opcon01/123.45
A” (i.e., S and O get interchanged in the response).

The main advantages of MADOCA are summarized as
follows.

1. Control messages are constructed as S/V/O/C

messages, which are abstracted and are easy to
understand.

2. Users can control equipment with a unified method
using MADOCA and do not need to know the details
of controls for each of the many devices.

3. The system can be easily applied at large scales with
the same architecture.

 __
#matumot@spring8.or.jp

TUCOCB01 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

944C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Figure 1: The software structure of MADOCA.

Although these advantages play a crucial role in our

control systems, we experienced several problems during
long-term operation with MADOCA; these included the
difficulties arising because of the restriction in message
length, time-consuming synchronous communication, the
lack of controls applicable in a Windows environment,
limitations imposed by the control architecture, and the
improvements required in object management.

Restriction in S/V/O/C Message Length
The message length in MADOCA is restricted to 255

characters. Therefore, it is difficult to transmit data of
variable lengths directly in a message. Currently, these
data are managed using an intermediate file by specifying
the file name in the message. However, this procedure is
time consuming and makes the control scheme unclear.

Synchronous Communication in ONC/RPC
Operator workstations and front-end computers

communicate via a remote procedure call (ONC/RPC),
wherein control messages are processed sequentially after
receiving the response for the previous message.
Although this procedure enables the easy management of
messages, it is time consuming. Further, it does not allow
for distributed controls for multiple procedures because
we cannot send control messages while we wait for the
reply to another message.

Lack of Controls in a Windows Environment
MADOCA is only supported on UNIX-like systems

since the MS utilizes System V IPC for interprocess
communication. Therefore, we cannot apply MADOCA
for controls in a native Windows environment. To use a
Windows computer for the MADOCA control system, we
need to use Cygwin or external computers to
communicate with a socket server on the Windows
computer.

Server Control Architecture
As shown in Figure 1, in the MADOCA framework, the

software structure at the client side in the operator
workstation differs from that at the server side in the
front-end computers. It allows communication between
clients and servers. However, we cannot achieve
communication with hosts in the same category. For
example, communication between operator workstations
is not possible because both are registered as clients.

Object Management
To deliver S/V/O/C messages to the appropriate

destinations, we utilize object names as the key to
determine the rules. When the AS distributes messages to
the appropriate EM on the remote hosts, we use
Relational Database Management System (RDBMS) to
refer to the remote hosts associated with the objects. We
use the configuration file to determine the AS that should
send the message from the MS. This is necessary since
the AS manages specific objects for each group (magnets,
vacuum, etc.), and there are usually several such servers
on the same host.

To determine the rules for message routing, we need to
set object-related information in the RDBMS and
configuration in advance. Therefore, we need elaborate
object management.

MADOCA II MESSAGING
To overcome the problems described in the previous

section, further flexibilities are required for messaging in
MADOCA. Upon investigating, we found that the
replacement of MADOCA control framework with
ZeroMQ socket library [3] and reconfiguration of the
messaging scheme can be a solution to these problems.

Figure 2 shows the software structure of MADOCA II
messaging. As you can see, an MS2 (Message Server for
MADOCA II) is set for each host. Two hosts can
communicate when the MS2 connections are established.
However, we do not allow message routing over three
hosts. Further, there is no AS in MADOCA II because the
function of the AS is implemented in the MS2 itself.

Messaging Data of Variable Lengths
ZeroMQ has a function for transmitting a number of

messages sequentially. We use this function to manage
data with variable lengths in messaging. Usually, we
transmit the data with a simple text message; however,
when required, we also transmit data with variable lengths.
Thus, data such as image data can be directly transmitted
with this messaging scheme.

The data are serialized using the MessagePack library
[4], since MessagePack can serialize data of many
formats (arrays, maps, etc.). MessagePack also has
several advantages. For example, this format does not
depend on language or byte order. Therefore, messages
can be exchanged easily among different computing

Limitations on Communication due to Client-

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB01

Software Technology Evolution

ISBN 978-3-95450-139-7

945 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

environments. Further, data size is efficiently compacted
during the serialization, thus enabling rapid data exchange.

Asynchronous Communications Between an
Operator Workstation and a Front-end Computer

ZeroMQ enables asynchronous communications, thus
removing the restrictions imposed by sequential controls
in MADOCA. Parallel processing of multiple controls can
be realized for fast processing.

Further, we can set multiple EMs on a front-end
computer, as shown in Figure 2 so that an EM is set for
each device. This enables efficient distributed processing
of multiple controls. It also makes the system robust; in
case of any problems with the EM for a specific device,
we can continue the operation without that particular EM
since other EMs are separated from it.
 Asynchronous communications allows users to send
multiple messages simultaneously and receive a target
message when they want. To realize such communication,
we need to set rules for sending and receiving messages.
Therefore, we tagged messages with unique message
identification numbers when transmitting them. The users
can receive the message by specifying the message
identification number.

Controls in a Windows Environment
Since ZeroMQ and MessagePack can be run on

multiple OS, MADOCA II supports controls in a
Windows environment as well as in Linux/Solaris
environments. The codes are written in C++ and can be
built using Visual C++. The codes are also unified
between Windows and Linux/Solaris. We can apply
MADOCA II for native Windows environment and can
control specific devices that can be only managed with
Windows drivers.

Message Communications Between Operator
Workstations and Between Front-end Computers

As shown in Figure 2, MS2s are set on each host and
GUI, and the EM can be easily connected to an MS2 on
demand. This means that each host can behave as a client
or server or both. Such flexibilities enable
communications between operation workstations and
between front-end computers. Figure 2 shows an example
of communication between MS2s at two operator
workstations.

Message Routing and Automated Object
Management

In MADOCA II, message communication is realized by
using the XREP/XREQ pattern in ZeroMQ for message
routing. To determine the rules for message routing, the
following procedures are performed in advance.

1. When an application such as a GUI or an EM is
started, S (composed of process number,
application name, account name, and the
hostname) is registered in the MS2 in the same
host.

2. MS2s used for controls are connected to each
other from the client side to server side.

3. Objects names (O) managed by the EMs are
registered in the MS2 in the same host; this
information is also sent to the connected MS2s.
Since the object information is also tagged with S,
we can identify the destination of the message
from the O in the S/V/O/C message.

After these procedures, the GUI can send a message to
the EM by using the object information in the MS2s.
The response from the EM can be returned to the GUI
by using the S information in MS2. Thus, object
management is automated, and RDBMS is not required,
thereby facilitating easy maintenance.

 We still use the configuration file for MADOCA II,
but only for access controls.

Figure 2: The software structure of MADOCA II
messaging.

INTRODUCTION OF MADOCA II AT
SPRING-8

We have introduced MADOCA II in the control
systems at SPring-8. Since MADOCA II was designed as
an upgrade of MADOCA, the API was designed to have
backward compatibilities. In other words, users can
upgrade applications from MADOCA to MADOCA II by
recompiling and relinking the programs.

To introduce MADOCA II into our control systems, we
first tested it at BL36XU beamline. Figure 3 shows the
implementation of MADOCA II messaging at BL36XU;
although MADOCA II was introduced at BL36XU, the
other systems were still controlled with MADOCA. Thus,
we prepared control interfaces to connect MADOCA with
MADOCA II. AS2 (Access Server for MADOCA II) is
used to control the MADOCA server from the MADOCA
II client. RPC_MS2 (the interface between the AS of
MADOCA and MS2) is used to control the MADOCA II
server from the MADOCA client. Both interfaces are set
to the hosts of MADOCA II. We tested MADOCA II over
a one-year period (since September 2012) to confirm the

TUCOCB01 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

946C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

stability of the system and to establish the procedures for
troubleshooting.

Figure 3: An example of the implementation of MADOCA
 II messaging at BL36XU. AS2 and RPC_MS2 interfaces
 are used to connect controls between MADOCA and
 MADOCA II.

Starting this autumn, several new applications that

employ other features of MADOCA II will be introduced,
as reported in these proceedings. In these applications,
waveform data are utilized in the Beam Position
Monitoring (BPM) [5], and image data are utilized in the
two-dimensional synchrotron radiation interferometer [6].
Data of variable lengths, such as waveform and image
data, are directly transmitted with the messages. For the
BPM, MADOCA II is applied under Windows
environment to control NI’s PXI-5922 digitizers [5]; we
also developed the MADOCA II-LabVIEW interface to
control the LabVIEW system with MADOCA II.

Thus, MADOCA II can be used for various purposes
with high flexibilities. The performance of MADOCA II
with multi-core processors is described in the literature
[7].

PLAN
As described in the previous section, MADOCA II has

been introduced for the control systems at SPring-8, and
some new applications are also being implemented.

We are preparing to replace our control system with
MADOCA II in the near future. However, several issues
are yet to be solved. For example, we need to confirm
MADOCA II availability in many distributions such as
Solaris, Linux, and ARM, especially for front-end
computers. For Solaris 10, we needed to prepare own
development environment because we could not use
MessagePack with the default settings owing to the old
version of gcc. The interface for messaging with the data
logging system [2] is currently under development.

Although the basic features of MADOCA II messaging
have been developed, some utilities such as messaging
log viewer and object discovery service are yet to be
developed.

SUMMARY
We developed MADOCA II as the next-generation

MADOCA control framework. Although MADOCA II is
based on a message-oriented control scheme as in
MADOCA, the former has improved feasibilities realized
by replacing the software in MADOCA with the ZeroMQ
library. New features such as messaging data with
variable lengths and controls in a Windows environment
have already been implemented in several new control
applications at SPring-8. Owing to its high flexibility, we
expect MADOCA II to be satisfactorily applied for
upgrading the SPring-8 control systems and control
applications in other facilities.

ACKNOWLEDGMENT
We would like to thank Dr. Ryotaro Tanaka, Dr.

Akihiro Yamashita, Masahiro Kago, and other colleagues
in JASRI controls and computing division for useful
discussions and suggestions.

REFERENCES
[1] R. Tanaka et al., “Control System of the SPring-8

Storage Ring”, Proceedings of ICALEPCS’95,
Chicago, p.201 (1995), R. Tanaka et al., “The first
operation of control system at the SPring-8 storage
ring”, Proceedings of ICALEPCS’97, Beijing, China,
p.1 (1997) .

[2] M. Kago et al., “Development of a Scalable and
Flexible Data Logging System Using NoSQL
Databases”, TUPPC012,

[3] http://www.zeromq.org/
[4] http://msgpack.org/
[5] Y. Furukawa et al., “MADOCA II Interface for

LabVIEW”, MOPPC129, ICALEPCS 2013, to be
 published.

[6] A. Kiyomichi et al., “Development of MicroTCA-
based Image Processing System at SPring-8”,
TUPPC088,

[7] M.Ishii et al., “Real-Time Process Control on Multi-
Core Processors”, MOPPC128,

 ICALEPCS 2013, to be published.

 ICALEPCS 2013, to be
 published.

 ICALEPCS 2013, to
 be published.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB01

Software Technology Evolution

ISBN 978-3-95450-139-7

947 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

