
TESTING & VERIFICATION OF PLC CODE FOR PROCESS CONTROL

B. Fernández, E. Blanco, A. Merezhin, CERN, Geneva, Switzerland

Abstract

Functional testing of PLC programs has been historically

a challenging task for control systems engineers. This

paper presents the analysis of different mechanisms for

testing PLC programs developed within the UNICOS

(UNified Industrial COntrol System) framework. The

framework holds a library of objects, which are represented

as Function Blocks in the PLC application. When a

new object is added to the library or a correction of an

existing one is required, exhaustive validation of the PLC

code is needed. Testing and formal verification are two

distinct approaches selected for eliminating failures of

UNICOS objects. Testing is usually done manually or

automatically by developing scripts at the supervision layer

using the real control infrastructure. Formal verification

proves the correctness of the system by checking whether

a formal model of the system satisfies the properties or

requirements. The advantages and limitations of both

approaches are presented and illustrated with a case study,

validating a specific UNICOS object.

INTRODUCTION

Nowadays any software functionality is required to be

delivered faster and with minimum cost while maintaining

the quality expected. This applies to any software and

also to process automation applications. These critical

applications needs to be extensively tested to validate

the requirements and ensure a smooth execution 24/7 in

industrial plants as manufacturing, nuclear plants, pharma,

cooling systems, etc.

Generally, it is accepted to divide tests according to their

level of specificity into: (1) unit testing, where a specific

section of code is tested separately, (2) integration testing,

where all individual units are put together to be checked

globally and (3) system testing where the complete system

is tested as a whole application.

Currently, testing is applied to process control applica-

tions as a black box tests of function blocks or modules

in combination with input simulations and visualization

of the results by the manual tester. Test cases are

manually created from the requirements or specifications

by the developer and basically testing is considered as

another activity of development. Following the industrial

automation standard ISA-62381 [1], process control appli-

cations testing is done in two main stages: Factory and

Site Acceptance Tests, FAT and SAT respectively. The

difference being whether the tests are performed in the

factory or in the real plant.

Automated tests allow a better implementation of repeti-

tive or tedious duties and can be hardly accomplished by

a manual tester [2]. These tests are a complement and

not a replacement of the tests procedures done by hand,

indeed not all test are easily automated. The manual tester’s

analytic skills can hardly be replaced and these testers are

frequently needed in the interpretation of the test results.

Therefore manual and automated tests are not unrelated but

complement each other.

Formal methods, within this context, are mathematical

techniques for the specification, development and veri-

fication of software and hardware systems. Applied to

programming code, formal methods provide a precise

semantics of a program. Having this formalization we can

prove that the program is correct, meaning it meets the user

specifications. Considering that other testing mechanisms

can never guarantee error-free applications this technique

appears to be a solution, however the complexity is an

evident drawback.

The paper describes the environment where testing

procedures must be applied, the test methods employed

focusing basically in automated tests mechanisms and

formal methods. Finally a summary of results and analysis

of the advantages and disadvantages of applying these

mechanisms is depicted.

UNICOS PLC CONTROL SYSTEMS

UNICOS is an object-based framework providing a

methodology and a set of tools to develop industrial control

systems. This framework is used in industrial installations,

e.g. the LHC (Large Hadron Collider) cryogenic control

systems, cooling and ventilation control systems, and the

LHC vacuum control systems. This framework, which has

been developed at CERN over the past 10 years, contains

several packages, according to the kind of control system to

be developed. The UNICOS-CPC package [3] is devoted

to process control systems. The control systems studied in

this paper are composed by two layers: the control layer

based on PLC (Programmable Logic Controller), and the

supervision layer based on a SCADA (Supervisory Control

And Data Acquisition).

UNICOS Object Library

In the framework, each physical device (e.g. valve)

and process units are modeled as UNICOS objects, the

complete set of objects is called the Baseline library.

Each new object to be designed under the UNICOS

framework must follow the UNICOS metamodel [4]. This

metamodel defines a predefined structure with a naming

convention, thus the interface of the new object is defined.

However the object functionality is not expressed and

validated at this stage.

THPPC080 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1258C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Knowledge-based Techniques



This object library is composed by Function Blocks

in the PLC developed with the ST (Structured Text)

programming language from the IEC 61131-3 standard [5].

The specification of the objects functionality is currently

described in a non-formalized way. It consists in well-

structured documents where the developer describes the

object functionality. In addition, test catalogs describing

the behavior of some parts of the object have been created

for testing purposes.

Many authors have arrived to the conclusion that most

of the failures in a system are due to incomplete and

unambiguous requirements specification.

In UNICOS, an initial analysis of the functional require-

ments that we want to test and verify has been made. This

analysis is the very first step to formalize and complete the

UNICOS objects specification.

TESTING & FORMAL VERIFICATION

APPROACHES

Manual Testing & Automatic Testing

The straightforward approach to test PLC programs is to

do it manually using the supplier’s IDE connected to PLC.

Within the UNICOS framework a PLC object is normally

meant to have a supervision counterpart representation.

Having this in mind, another possible approach would

be using a SCADA application connected to the PLC.

Assuming the communication is correct, a tester can

manipulate devices and observe their reaction. Here, the

good practice would be to have a test catalog with all

the test cases explicitly written. The tester can simply

follow the instruction and mark performed tests with the

corresponding results.

The UNICOS Baseline has been developed containing

different object parametrization. To complete the tests

additional PLC code has been programmed to test some

object features which require additional inputs and/or

variables (e.g. interlocks behavior). Table 1 shows a

simplified example of test catalog for three UNICOS object

configurations which validates the behavior on temporal

stop interlock (TS). The table’s header represents the

test sequence performed at SCADA layer. Each line

represents expected states of the corresponding device

parametrization. The test script has been based on the test

catalog.

Table 1: Test Catalog Example: A Sequence

Initial state TS goes on TS goes off

Config 1 off off off

Config 2 on off on

Config 3 100 0 100

The next evolutionary step was to automatize the tester’s

routine. The SCADA programming language really fitted

this need, as its main purpose is to send an order and

retrieve a result. The test script appeared to be simple

Figure 1: Testing topology.

and laconic though the execution time was rather long

and the maintenance has been found complicated. This

kind of automated testing can be classified as a system

testing according to the topology (see Fig. 1) and since

the test script is at the supervision level. More appropriate

unit testing could be done by using proprietary simulator

tools thought this solution can be used independently of

the PLC platform (Siemens, Schneider or Codesys). The

developed test scripts contain a certain level of abstraction

(implemented as test scenarios) allowing them to be reused

for different UNICOS object instances.

Formal Verification

A different approach is to apply formal verification to

the UNICOS-CPC baseline objects. Formal verification

depends on the use of mathematically based techniques

and tools for the design, development and analysis of

systems. The reason of using formal methods is to try to

increase the level of correctness. Using testing approaches

is usually impossible to test all the possible combinations,

this problem can be solved by using formal verification and

bugs can be detected before the system is implemented.

The general idea is to create a formal model of the

real system and check its correctness against formal

requirements describing the expected behavior of the

system. There are two different approaches of verification:

axiomatic verification and algorithmic verification.

Axiomatic verification is a formal method for verifying

the functional correctness of a structured sequential pro-

gram by tracing its state changes from an initial condition

to a final condition according to a set of rules. Theorem

Provers are the tools used for this kind of verification (e.g.

Coq theorem prover). It is really hard to automatize and

the success of this technique depends also on the skills

of the engineers and researchers. It has been applied to

operating systems and compilers but also to PLC programs.

In [6], the Coq theorem prover is applied to formalize the

semantics of the PLC languages described in the standard

IEC 61131-3.

Algorithmic verification is usually referred as model

checking. This technique use semi-algorithms to check that

a global model (representing the whole system) meets the

requirements. It is feasible to automatize the creation of

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC080

Knowledge-based Techniques

ISBN 978-3-95450-139-7

1259 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



these model and some theoretical limitations are overcome

by using abstractions. It is applied mainly to hardware,

abstract software and systems models.

Most of the verification applied in industry is done using

algorithmic verification and this is the approach selected to

verify PLC program based on UNICOS. Applying model

checking to any system requires the formalization of the

system and also of the requirements (See Fig. 2):

1. Formalization of the system is done by creating mod-

els using formalisms as Petri nets, labelled transtion

systems, timed automata, hybrid automata, etc.

2. The requirements are usually formalized using tem-

poral logic. Temporal logic is a formalism to express

unambiguously the requirements or properties. It

contains a set of rules for representing propositions

qualified in terms of time.

Figure 2: Model checking approach.

There are a significative number of available model

checking tools available. Some of the most popular or

relevant are NuSMV, UPPAAL or SPIN.

Model checking approaches for the verification of PLC

programs have been studied before for different application

areas and description languages. The reference [7] applies

algorithmic verification to the SFC language. Untimed

SFC models are transformed into the input language

of the Cadence SMV tool. Timed SFC models are

transformed into timed automata and they can be analyzed

by the UPPAAL tool. The reference [8] models and

analyzes a safety-critical system using coloured Petri

nets as formalism and symbolic model checking for the

analysis. In [9] they model and apply formal verification

to a particular timed multitask PLC to a specific platform

from the Bosch Group.

Our Approach and Contribution For the verifi-

cation of UNICOS-CPC baseline objects, we propose

a methodology for its formalization in automata based

models for further treatment with verification tools (see

Fig. 3). Baseline objects are formalized in a generic

intermediate model and then using another transformation

Figure 3: Transformation of ST PLC code to NuSMV input

language through an automata based abstract model.

formal verification can be applied with NuSMV (as shown

in the figure) and other model checkers, like UPPAAL.

This methodology in being currently implemented in an

automatic generation tool based on EMF (Eclipse Model-

ing Framework) and Xtext, from ST we can produce formal

models for NuSMV, UPPAAL and the input language

of the BIP (Behaviour, Interaction, Priority) framework,

passing through the intermediate model. This approach

will provide a good test bench to compare performance

limitations and identify the more appropriate tool for the

kind of properties to verify.

Formal methods techniques can be applied also to

complete control systems developed with UNICOS. In the

paper [10] we presented a first approach for formalizing

a complete UNICOS control system using the BIP frame-

work.

ANALYSIS & EVALUATION OF THE

APPROACHES

PLC software development lacks of modern software

engineering best practices such as unit test or daily builds.

Automated testing via SCADA is feasible and in certain

cases allows to save the time spend on testing. We

found examples where the test case can be shared between

different objects. We also reuse automated test scripts

to test different types of PLC. Automatic testing permits

reducing human errors, though the approach has several

issues: (1) it involves many components (the systems must

be operative and properly communicating) which makes

it hard to support and replicate; (2) it is not possible to

test all possible combinations of parameters of a baseline

object; the cost of each parameter’s combination test is

relatively high; (3) it is a black box testing of PLC code

- it is not possible to manipulate or observe the variables

which are not communicated. Additional PLC code must

also be implemented to simulate PLC events and inputs via

the supervision scripts.

Formal verification techniques are not widely used in

THPPC080 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1260C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Knowledge-based Techniques



Table 2: Overview of Automatic Testing and Formal Verification for UNICOS Baseline Objects

Advantages Disadvantages

Automatic Testing with the real system Sophisticated maintenance

Testing Technology is available High price for new test case

Reduce human errors Black box testing

Reusable for different PLC Difficult to find the source of the problem

Model Explores all the combinations Verification of a system model

Checking Earlier bug detection Need of automatic generation tools

Avoid human errors Need to prove the transformations

Complexity hidden by the generation tools State space explosion

Counter-examples to find the source problem Applying abstractions techniques is not trivial

industry because of the complexity of, both, building

the models of the PLC systems and formalizing the

specifications. Control system engineers are usually not

familiar with these techniques, rising the need of automatic

generation tools to hide this complexity. Another common

problem in formal verification is the state explosion

problem. As an example, trying to verify UNICOS-CPC

objects with about 750 lines of ST code and about 120

variables, integers or float, causes some severe issues with

the performance of the model checker. However, providing

(1) automatic generation tools for the models, (2) a good

language to express properties, and (3) the right technique

for abstraction, model checking can be an useful and

powerful technique to verify PLC control programs. Model

checkers provide counter-examples, when the model does

not reach a specification property. This feature definitely

helps the developer to find the original problem.

Table 2 summarizes some of the advantages and disad-

vantages of both approaches.

CONCLUSIONS AND FUTUREWORK

This paper present an analysis of two different tech-

niques aimed to test and verification PLC control systems,

specifically applied to UNICOS-CPC baseline objects.

Automatic testing and formal verification approaches are

meant to guarantee that the PLC control systems meet the

specification requirements. Both techniques have different

advantages and disadvantages but they can complement

each other. While automatic testing seems a more

feasible technique to implement, formal verification seems

a powerful future option.

Ideally formal verification could be integrated in the

development process of PLC control systems, in our

case inside the UNICOS framework. This will help the

control engineers to detect and correct bugs before the

PLC application is deployed. Once this verification step

is finished, automatic testing could be applied within the

real PLC control system, then bugs can be detected if any

situation was not taken into account on the formal models.

Next work on automatic testing will focus on extending

the test coverage and also performance improvement when

making the tests.

Concerning formal verification, an automatic generation

tool to produce models of our control systems and verify

them with different model checkers is under development.

A mathematical proof of the transformations rules (se-

mantics preservation) is required as providing a formalism

to specify unambiguously the test catalog, hiding the

complexity of temporal logic for control engineers.

REFERENCES

[1] ANSI/ISA 62381: Factory Acceptance Test (FAT), Site

Acceptance Test (SAT), and Site Integration Test (SIT),

Automation Systems in the Process Industry.

[2] E. Dustin, T. Garrett, B. Gauf. Implementing Automated

Software Testing: How to Save Time and Lower Costs

While Raising Quality”. Addison-Wesley Professional,

March 2009.

[3] E. Blanco et al. UNICOS Evolution: CPC version 6,

ICALEPCS, Grenoble (France), 2011.

[4] B. Copy et al. Model Oriented Application Generation for

Industrial Control Systems, ICALEPCS, Grenoble (France),

2011.

[5] IEC 61131: Programming languages for programmable

logic controllers, International Electrotechnical Commis-

sion.

[6] J. O. Blech and S. O. Biha. Verification of PLC Properties

Based on Formal Semantics in Coq, 9th SEFM, Montevideo

(Uruguay), 2011.

[7] N. Bauer, S. Engell, R. Huuck, B. Lukoschus, and

O. Stursberg. Verification of PLC programs given

as sequential function charts. Integration of Software

Specification Techniques for Applications in Eng., Springer,

LNCS, 2004.

[8] T. Bartha et al. Verification of an Industrial Safety Function

using Coloured Petri Nets andModel Checking, 14th MITIP

2012.

[9] H. B. Mokadem et al. Verification of a Timed Multitask

System with UPPAAL, IEEE Transactions on Automations

Science and Engineering 7, 4(2010) 921-932.

[10] B. Fernández et al. Model-based Automated Testing of

Critical PLC Programs.11th INDIN. Bochum (Germany),

29-31 July 2013.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC080

Knowledge-based Techniques

ISBN 978-3-95450-139-7

1261 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


