
NEW EPICS DRIVERS FOR KECK TCS UPGRADE

J. Johnson, K. Tsubota, J. Mader W.M. Keck Observatory, Kamuela, HI, USA

Abstract
MOCOAAB05 describes how the telescope control

system at the W.M. Keck Observatory is being upgraded.

A key change is that the control system is moving from a

VxWorks/VME platform to a RHEL/PC+COTS solution.

The control system will continue to use EPICS but will

move from R3.13.10 to R3.14. Upgrading from

VxWorks/EPICS has resulted in the need for a number of

new drivers. This paper assumes that the reader is familiar

with EPICS, Device Support and the ASYN driver

framework [1] and will focus on the domain specific portions

of the drivers. The primary focus will be on the drivers

for the following hardware: Heidenhain Encoder Interface

Box (EIB) [2], National Instruments RIO [3] and

Symmetricom BC635 [4]. Throughout this paper the

Telescope Control System Upgrade will be referred to as

TSCU.

OVERVIEW

Fig. 1 provides a high level overview of the drivers for

TCSU. The ASYN framework [1] and StreamDevice are

being reused from EPICS in addition to the PMAC [5]

and EtherNet/IP [6] drivers. The remainder were

developed at Keck. Each driver is documented with

technical background material specific to the driver and

also includes information such as to how to build, how to

use and how to test (including db examples). All drivers

use the asynPortDriver framework, typically support the

asynInt32 and asynFloat64 interfaces and follow the

standard EPICS CONFIG.Defs build convention.

Figure 1: EPICS drivers for TCSU.

National Instruments provide a Linux solution for RIO

communication, Symmetricom provide a Linux driver and

API for the BC635 card and Heidenhain provide a Linux

driver and API for their Encoder Interface Box (EIB).

Keck provided an EPICS driver adaptation on top of

these. All other drivers were ported directly from

VxWorks to ASYN and two were redone to use

StreamDevice.

HEINDENHAIN ENCODER DRIVER

For TCSU, we are using the Heidenhain EIB 749

encoder interface box for precise position measurement

for the Azimuth and Elevation. A maximum of four

Heidenhain encoders with sinusoidal incremental signals

(1 VPP) or EnDat can be connected to the EIB 749. The

EIB subdivides the periods of the incremental signals

4096-fold for measured-value generation reduced by

adjusting the sinusoidal incremental signals. Internal or

external triggers can be used for axis-specific storage of

the measured values.

A standard Ethernet interface using TCP or UDP

communication is available for data output. The method

of transmission can be set via the operating mode.

Heidenhain provide a Linux driver and user API which is

well documented. The EIB 749 supports the following

operating modes: Polling, Soft Real-Time, Streaming and

Recording

All modes except for polling are associated with one or

more triggers. A trigger can be external via hardware or

internal using the EIB clock. The driver uses Soft Real-

Time where the position data is transported with UDP

packets from the EIB 749 to the client. This occurs

parallel to the TCP communication via the standard

Ethernet interface. With each trigger event, a data packet

is sent to the client automatically and stored locally in a

FIFO managed by the Linux driver.

From here, the application can read out the data within

a program loop or register a callback function to be

executed when data is available. The driver uses the

callback method which allows it to be woken each time

there are N or more items in the FIFO. This allows for

easy oversampling and optional filtering. I/O INTR and

Scan are supported by the driver.

The driver reports

 The unit hostname, firmware and ip address

 General configuration such as nominal

increments, system line count etc.

 Trigger counts

 Per head information that includes: Head Status,

the EIB sampling timestamp, Head Signal

Strength, the incremental position, Absolute

Reference Information (A, B & C), if there is an

error, if the head is referenced

Commands include: Reference 1 or more heads, Reset

the EIB and Reconnect to the EIB.

Signal strength is returned as 4 bytes from the EIB, 2

bytes for the A signal and 2 for the B signal. These are

adjusted by the driver to the "zero-value of 0x800" of the

signal, so:

A1 = 12-bit AD converter value - 0x800

B1 = 12-bit AD converter value - 0x800

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC067

Control System Upgrades

ISBN 978-3-95450-139-7

1231 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

The full read head 1 Vpp signal strength can then be

produced using

SQRT (A1*A1+B1*B1) / ADC Counts

The driver must be configured from the IOC shell

before it can be used. This includes providing its port

name, the hostname of the EIB, the trigger to use and the

system information on tape length, nominal increments

etc.

Fig. 2 shows an associated test tool we developed that

allows for detailed setup and testing of the read heads.

This tool does not use the EPICS driver but shares much

of the code base. Sinusoidal, position and reference data

is being captured at 10 kHz and displayed at a 10 Hz

update rate.

Figure 2: QT based EIB oscilloscope.

NATIONAL INSTRUMENTS RIO

This section describes the driver-level interface

between EPICS and a National Instruments MXI/Ethernet

Reconfigurable I/O (RIO) chassis and the associated IO.

In TCSU the Axes Control and Rotator subsystems will

utilize RIO and C Series IO for general purpose IO.

Figure 3: MXI RIO chassis with C Series I/O.

The RIO systems consist of a reconfigurable chassis

housing the user-programmable FPGA, hot-swappable

I/O modules, and graphical LabVIEW software for FPGA

programming. The RIO core has an individual

connection to each I/O module and is programmed with

easy-to-use elemental I/O functions in the NI LabVIEW

FPGA Module to read or write signal information from

each module.

Communication from a Linux box to a MXI/Ethernet

RIO is accomplished through the NI-RIO driver and the

associated FPGA to C API. This low level driver is

capable of communicating with the FPGA through DMA

FIFOs or named variable access (indicators or controls).

FPGA development is performed on a Windows machine

using LVFPGA. The FPGA bitfile is compiled on the

windows machine and a deployment-specific header file

is created from it for use with the FPGA to C API.

Figure 4: FPGA development and deployment.

In using the driver the basic steps to interface with the

FPGA system are as follows:

1. On Windows, develop LabVIEW FPGA VI,

compile bitfile, and generate C API.

2. Deploy bitfile and associated header file to

Linux subsystem host

3. Preprocessed FPGA header file

4. Configure the driver to use the bitfile and

mapping

5. Start IOC

In order to make the driver generic, the header

generated from the bitfile cannot be used directly. The

relevant information to address FPGA indicators and

controls are present in the header file but are only

available as enumerations. In order to allow the end user

of the driver to express the parameter as part of the EPICS

record definition the driver needs to support some type of

simple text to address mapping. This is generated through

a preprocessing step.

TCSU provides a script to take the FPGA output and

create a simple mapping file that can be used by the

driver. The generated file has the format

 FPGA Bitfile name

 Bitfile Signature

 Indicator/Control , DateType , Name, Address

e.g.
Indicator I16 A10C1 0x811E

Control Bool AOStop 0x8112

The asynFloat64 interface is used for AI and AO

records. From the EPICS side read and write parameters

THPPC067 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1232C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

are expressed in floating point and the driver will convert

these to fixed point numbers as needed by the RIO. The

driver does not support INTR I/O as there is not a specific

need for TCSU. In addition ondata change updates are not

directly supported by the FPGA API making this more

difficult to implement.

Natively all data transfers within the FPGA and

between the FPGA and controller are 32 bit transfers. At

the API level data transfers can occur as signed/unsigned

8, 16, 32 and 64 bit transfers. The FPGA does not support

floating point but does utilize fixed point numbers.

All read or write processing has the same basic data

flow:

 Use the ASYN base class to get the parameter

name

 Use the mapping to get the correct FPGA

address

 Use the FPGA session id, the FPGA item

address and provided value to perform a read or

write

Analogue data is more complicated than

Boolean/integer data because of the use of Fixed Point

Data Types and the fact that the word sizes can change

depending on the IO module type. The EPICS driver

takes care of all this providing automatic and correct fixed

to floating point conversions as needed in both direction.

The entry point for the driver, which needs to be called

from the st.cmd file before IocInit is

mxiRioAsynPortDriverConfigure (const char *portName,

const char* filename). It takes two parameters, the asyn

port name to use and the fully qualified path to the

mapping file.

SYMMETRICOM BC635

The current observatory timing solution consists of a

pair of Symmetricom Network Servers that feed an IRIG-

B signal to K1 and K2 through a set of IRIG distribution

amplifiers. TCSU will continue to use this architecture

and will utilize the Symmetricom bc635PCIe timing cards

to connect the TCSU subsystem nodes to the timing

network. The timing module will provide precise time and

frequency functions to the subsystem controllers and

associated peripheral data acquisition systems. The

Symmetricom Linux SDK is used to create the EPICS

driver.

TCSU has a logical subsystem called TIM that is

comprised of:

1. EPICS driver and device support for the

Symmetricom bc635PCIe board

2. EPICS general time support

3. Local NTP server based on BC635

4. Time conversion utilities

5. An IERS interface

Figure 5: TIM subsystem.

The Linux and EPICS driver with general time support

will support the following features:

 Providing an accurate and synchronized time

source

 Accurate EPICS processing timestamps.

 Reading the current time on request.

 Triggering I/O interrupt and time report on an

external event

 Supporting I/O interrupt at a specified time of

day.

 Allowing accurate periodic interrupts to drive

the system clock and thus initiate database

processing at precise intervals.

 Generating an external periodic signal

The time conversion utilities will support the following:

 Accept time in UTC or GPS

 Convert time to TAI, GPS, UTC, UT (UT1), TT,

TDB, GMST and LAST

The IERS interface will provide access to the various

correction factors needed to convert between different

timescales.

The bc635 driver supports the Symmetricom 635 PCIe

timing board. The driver provides the core functionality to

read and configure the timing and event related properties

of the board. Clients can access the current global time

and event time on demand, as well as utilize I/O interrupts

to trigger software event processing. The driver supports

many but not all of the bc635 capabilities but fully covers

TCSU needs. I/O INTR and standard demand reads are

supported. Items that can be read include: the current

interrupts mask settings, the current operational mode, the

current year, the current global time, event time,

board/signal status. When reading the time (global or

event) the driver will convert the UT timestamp returned

by the board into the local UTC time in seconds.

When a command is written to the driver the associated

command methods typically just invoke the

Symmetricom library functions to set or configure the

timing board. Event interrupts are executed

asynchronously as part of a callback by the timing board

library. The processing routine uses the interrupt source to

determine where to fetch the current event time. This can

be any one of the three event sources (EVENT 1, 2, or 3).

Event 1 is the only source capable of being triggered off

the DDS periodic pulse heartbeat. Event 2 and 3 are

hardware driven interrupts. The event time is converted to

the compatible UTC time and the driver member is

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC067

Control System Upgrades

ISBN 978-3-95450-139-7

1233 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

updated. I/O INTR records will automatically process if

the corresponding event member is updated. The driver is

configured as part of the IOC start-up. The following C

function defines the entry point to the driver library:
bc635AsynPortDriverConfigure(const

char portName)

General Time, Reference Clocks and NTP

A typical computer has two clocks; a battery-backed

clock that is always running (the ``hardware'', “Real Time

Clock (RTC)”, ``BIOS'', or ``CMOS'' clock), and another

that is maintained by the operating system currently

running on the computer (the ``system'' clock). The

hardware clock is generally only used to set the system

clock when the operating system boots, and then from

that point until a reboot or the system is powered off the

system clock is the one used to keep track of time.

Optionally a system may utilize an additional high

precision reference clock, typically this is an accurate

clock utilizing IEEE 1588, IRIG or GPS for

synchronization and available over the network or locally.

Standard behavior of most operating systems is as follows

(and this will be used by TCSU):

 Set the system clock from the hardware clock on

boot

 Keep accurate time of the system clock with an

NTP daemon

 Allow NTP to keep the hardware clock updated

For TCSU the system and hardware clocks will be set

from the bc635PCIe card via the NTP protocol. TCSU

provides an updated NTP daemon that uses the bc635 as a

reference clock. Within NTP the use of a bc635 card has

been standardized as Type 16 Bancomm GPS/IRIG

Receiver (GPS_BANCOMM).

EPICS General Time Support

Record timestamps in EPICS are obtained through the

generalTime framework which provides a mechanism for

several time providers to be present within the system.

There are two types: one provider for the current time and

the other is for providing Time Event times. The bc635

driver is capable of registering as both a general time and

event provider. The initialization occurs as a result of the

iocsh BC635Time_Init call, which takes the provider

priority as a parameter.

Time Conversion Utilities

Time conversion is provided via a custom record and

allows conversion from UTC and GPS to TAI, GPS,

UTC, UT (UT1), TT, TDB, GMST and LAST.

IERS Interface

The International Earth Rotation and Reference

Systems Service (IERS) serves the astronomical, geodetic

and geophysical communities by providing data and

standards related to Earth rotation and reference frames.

The IERS Rapid Service/Prediction Center is the product

center of the IERS and is responsible for providing Earth

orientation parameters (EOP) on a rapid turnaround basis.

TCSU provides an interface to the IERS Rapid

Service/Prediction Center. It extracts and locally updates

the IERS parameters that correct for polar motion, UT1

and occasionally leap seconds. As all of these affect the

pointing of the telescope, the design here automatically

handles the accessing of these parameters. To prevent the

TCSU subsystems from having to access the IERS sites

during operations, the IERS interface writes the data to

the configuration service database (see TUPPC032).

Once downloaded, the parameters can then be accessed

when required without the need to make a connection to

the IERS service. The latest downloaded values will then

be available to the controller as soon as it is started.

OTHER DRIVERS

Additional drivers were developed using ASYN to

support Accusort 20 barcode readers, the Daytronic

System 10 data acquisition and Keithley M1000 series

I/O. The latter two were migrated from drvAscii to use

Streams. PMAC IP and the associated Motor record and

the EtherNet/IP drivers are been reused directly from the

EPICS community.

ACKNOWLEDGEMENTS

The W. M. Keck Observatory is operated as a scientific

partnership among the California Institute of Technology,

the University of California, and the National Aeronautics

and Space Administration. The Observatory was made

possible by the generous financial support of the W. M.

Keck Foundation.

REFERENCES

[1] ASYN EPICS driver framework website:

http://www.aps.anl.gov/epics/modules/soft/asyn
[2] Heidenhain website: http://www.heidenhain.com

[3] National Instruments (RIO subsection) website:

http://www.ni.com/compactrio/

[4] Symmetricom (BC635 subsection) website:

http://www.symmetricom.com/products/bus-level-

timing/pci-express/bc635PCIe-IRIG

[5] SYNAPPS TPMAC (PMAC IP) website:

http://www.gmca.anl.gov/TPMAC2/index.html

[6] K.U. Kasemir, L.R. Dalesio, “INTERFACING THE

CONTROLLOGIX PLC OVER ETHERNET/IP”,

THAP020, ICALEPS 2001

THPPC067 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1234C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

