
OLOG AND CONTROL SYSTEM STUDIO: A RICH LOGGING
ENVIRONMENT

K. Shroff#, L. Dalesio, A. Arklic, NSLSII, Upton, NY, USA
E. Berryman, FRIB, East Lansing, MI, USA

Abstract
Leveraging the features provided by Olog [1] [2] and

Control System Studio [3], we have developed a logging
environment which allows for the creation of rich log
entries. These entries in addition to text and snapshots
images store context which can comprise of information
either from the control system (process variables) or other
services (directory, ticketing, archiver). The client tools
using this context provide the user the ability to launch
various applications with their state initialized to match
those while the entry was created.

INTRODUCTION
The goal is to provide an environment to facilitate in

the creation of log entries along with information which
could be used to 1. Better organize the log entries and
provide interesting means to query and retrieve the log
entries 2. Provide the information required to integrate
with various applications and services.

An Olog log entry consists of a create time, an owner,
text and attachments, additional log entries also consists
of at least one logbook and one or more tags and/or
properties. Logbooks and tags provide a mechanism to
organize log entries into groups or hierarchies while
properties can be used to attach sets of key value data
which can be used both for organizational purposes and
also the information required for integration with controls
and experimental applications.

ARCHITECTURE
The Figure 1. Represents the general architecture of the

Olog logging environment which consists of the
following major components, the Olog webservice, client
libraries in java and python, various client applications
including CS-Studio, logbook webclient and various
scripts and utilities. The service and the client libraries
provide a uniform interface which simplifies and
decouples the architecture. The uniform interfaces enable
1. the separation of concerns, thus allowing for the
creation of simple and performant clients and service 2.
the independent, easy evolution of each of the pieces.

Olog service
The Olog service is a REST style web service [4] [5],

which provides the functionality to create, update and
query for log entries. The service is stateless i.e no session
data is kept for any client, this helps in creating redundant
and load balancing systems. In keeping with the RESTful
nature, the service exploits existing well-defined
technologies to define its interface, the client use HTTP

request to identify the resource and define the operation.
The data (groups of log entries) in encoded using XML or
JSON, which have good support in all current
programming and scripting languages. This approach of
using standard technologies minimizes the
implementation effort on both the application and the
service side.

The service allows for the creation of a log entry
containing text and attachments, additionally users can
use tags, logbooks and properties to include additional
information useful to organize the log entries or provide
integrations with other systems and services. Olog can be
queried for log entries based to creation time, owner,
logbooks, tags, properties and the text description. The
support for pagination ensures that large requests can be
handled in reasonably performant manner.

Client Libraries
While the RESTful Olog web service provides a simple

well defined service interface, there also exists client
libraries in java and python which provide language
specific implementation. These libraries handle the tasks
associated with the XML and JSON encoding, managing
the HTTP request calls, etc..thus simplifying the client
application. The client libraries can also include utility
methods that provide the functionality that is common for
multiple applications.

Client Applications and Script
The use of Uniform Interfaces and stateless

communication has resulted in environment consisting of
various client applications which are specialized for
different use cases.

Logbook webclient a simple webclient built using

bootstrap, jquery and html5; serves as a portable tool to
quickly search for a group of entries and also to create
and update simple log entries consisting only of text and
attachments.

CS-Studio a rich client which in addition to providing

means to search and create log entries also provides
integration with the applications in CS-Studio. The Olog
integration in CS-Studio allows applications to define the
data that should be included in a log entry associated with
that application, thus when users attempt to create a log
entry they are provide with an automatically initialized
rich logentry pre populated with properties, tags, text and
attachments to capture the context of the CS-Studio
applications. The log viewer application in CS-Studio can
then consume these rich entries and seamlessly integrate

#shroffk@bnl.gov

THCOAAB09 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1074C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

with the applications and services available using the
defined context. For example, while creating a log entry
from the BEAST alarm client the log entry can be
initialized with a tag associated with the system of the
alarming process variable (pv) or process variables, a
property which includes the information about the process
variables like name, status and severity and an additional
property consisting of a configuration file associated with
other CS-Studio applications like databrowser. Olog can
now be queried for log entries associated with alarms on
one or more process variables, using the context
information in the rich log entry other CS-Studio
applications like the diagnostic probe can be launched for
the associated pvs or the databrowser can be launched to
display historic archived values for the pvs at the time of
the entry creation.

pyOlog scripts the python client library is used for

experimental logging. While the raw experimental data is
saved in dedicated high performances stores, Olog entries
are created, either automatically or manually, along the
various steps of an experiment (data acquisition and data
processing). For example entries are created at the start of
a scan which includes information like sample
type/orientation/scan type and the scripts used to run a
particular scan, or at the end of a data processing step
containing the reduced data set/data plot along with
references to the raw data file [6]. These queryable log
entries hold references and link providing users an easy
way to diagnose a particular scan, review the results of a
data processing step and locate the raw data.

CONCLUSION
The Olog architecture provides a simple, scalable, rich

logging framework for controls operation and experiment
logging purposes. The use of uniform interfaces, stateless
session has enabled the decoupling of the various
modules and allows for easy independent development of
each component. The use of tags, logbooks and properties
enables the creation of better organized rich log entries
which providing information to better integrate with other
controls and data processing applications.

REFERENCES
[1] Olog; http://olog.github.com/
[2] Eric Berryman, Olog, EPICS spring meeting (2013)
[3] Control System Studio;

http://controlsystemstudio.github.com
[4] Fielding, Roy Thomas (2000), Architectural Styles and the

Design of Network-based Software Architectures, Doctoral
dissertation, University of California, Irvine

[5] Pautasso, Cesare; Zimmermann, Olaf; Leymann, Frank
(2008-04), "RESTful Web Services vs. Big Web Services:
Making the Right Architectural Decision", 17th
International World Wide Web Conference (WWW2008)
(Beijing, China)

[6] NSLS-II High Level Application Infrastructure and Client
API Design, G. Shen, L. Yang, K. Shroff Presented at the
2011 Particle Accelerator Conference (PAC’11)

Figure 1: Architecture of the Olog framework showing the various pieces along with their dependency hierarchy.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THCOAAB09

User Interfaces and Tools

ISBN 978-3-95450-139-7

1075 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

