
RAPID APPLICATION DEVELOPMENT USING WEB-2.0*
TECHNOLOGIES

S. Reisdorf, B. Conrad, D. Potter, M. Hutton, P. Reisdorf, LLNL, Livermore, CA 94550, USA

Abstract
The National Ignition Facility (NIF) strives to deliver
reliable, cost effective applications that can easily adapt to
the changing business needs of the organization. We use
HTML5, RESTful web services, AJAX, jQuery, and JSF
2.0 to meet these goals. WebGL and HTML5 Canvas
technologies are being used to provide 3D and 2D data
visualization applications. jQuery’s rich set of widgets
along with technologies such as High Charts and Data
tables allow for creating interactive charts, graphs, and
tables. RESTful Web Services have replaced the
traditional SOAP model allowing us to easily create and
test web services. Additionally, new software based on
Node.js and WebSocket technology is currently being
developed which will augment the capabilities of our
existing applications to provide a level of interaction with
our users that was previously unfeasible. These Web 2.0-
era technologies have allowed NIF to build more robust
and responsive applications. Their benefits and details on
their use will be discussed.

INTRODUCTION
It is often said that with software “the only thing

constant is change” [1]. Software projects usually have a
high degree of ambiguity where requirements are
frequently changing and the scope of work is continually
shifting. This volatility can make software development
difficult and without the correct approach projects can
either take too long or end up delivering the wrong
product. Additionally choosing the right technology can
be a challenging task, especially in a time when web
technologies and platforms are continually evolving. In
order to meet these demands, the National Ignition
Facility (NIF) has adopted many web 2.0 technologies
such as jQuery, Oracle Application Express (APEX),
HTML5, Node.js, and Representational state transfer
(RESTful) web services. Using these technologies NIF
has been able to deliver many data-driven applications
that are reliable, cost effective and can easily adapt to the
changing business needs of the organization. This rapid
application development approach has resulted in faster
delivery times, better quality, lower cost, lower
maintenance, and greater customer satisfaction.

SOLUTIONS
The evolution of Web 2.0 and HTML5 has created

many frameworks that help make software development
easier. Access to so many different tools is a blessing and
a curse as frameworks and languages that seem like a

good choice today might not be the best option tomorrow.
Choosing the right tool or technology and knowing when
to change is essential for an organization to succeed.

 A few years ago the NIF invested in the Java Server
Faces (JSF) framework. Recently we have found the JSF
framework too rigid. JSF is a component based
framework that abstracts many layers such as JavaScript,
CSS and AJAX requests. This abstraction can be nice as
developers don’t need to be CSS or JavaScript experts;
however, it is very challenging if you need to do
something that the component or framework doesn’t
support. Recognizing this, we have switched to using
more flexible frameworks such as Oracle APEX and
jQuery.

JavaScript and jQuery
As the web has evolved dynamic and responsive

applications are easier to create thanks to JavaScript and
leading JavaScript libraries such as jQuery. jQuery is the
industry standard JavaScript library [2] that abstracts
many core JavaScript functions into a standard device
agnostic API. It has an extensible plugin architecture
allowing developers to create reusable “widgets” that can
be plugged into any web application. This allows
developers to quickly develop feature-rich user interfaces;
however, care needs to be taken in order to prevent the
maintenance issues associated with possible unstructured
and unwieldy code. Unlike Java which has a compiler
and IDE that can check and find most bugs during
development, JavaScript is much more dynamic and is
compiled in the browser at runtime, making it harder to
debug. Adopting Object Oriented (OO) coding practices
in JavaScript is essential to create testable objects that can
easily interrelate with one another. A variety of open
source frameworks such as jQuery-ui widget factory,
JavaScriptMVC, Backbone.js, and AngluarJS provide this
capability. Each framework has different features, some
of which are lightweight while others are much more
complicated. The NIF decided to use a hybrid approach
using just the generic core objects from JavaScriptMVC
along with the jQuery-ui widget factory to create an OO
framework. This process allows us to be much more agile
and adaptable as we are not bound to the constructs of any
specific library. Leveraging OO design practices, NIF
software developers have built up a library of components
and jQuery widgets that are reused across applications.
One such application that uses these widgets is the NIF
Archive Viewer (Fig. 1). This application is a data driven
portal into all experiment and diagnostic data.

 __

*This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. #LLNL-ABS-632634, LLNL-CONF-644468

THCOAAB05 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1058C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

Figure 1: A configurable and reusable jQuery widget that
creates responsive charts with hover, zoom, and click
capabilities

Users are presented with a dynamic dashboard that
renders tables, charts, graphs, and interactive discussions
for the NIF experiments. The NIF uses the open-source
JavaScript library HighCharts to create feature-rich charts
and graphs that allow users to zoom, highlight and click
into details on a chart. JavaScript libraries such as
Datatables and Slick Grid are used to create interactive
tabular views that allow users to rearrange and manipulate
their data. By using these libraries, applying object
oriented design patterns to JavaScript and adopting a data
driven architecture, developers have been able to reuse
components across applications, speeding up
development time while reducing the reliance on testing.
Every time a component is reused in an application it is
another iterative test for that piece of software, making it
and the applications that use it much more reliable.

RESTful Web Services
The NIF comprises of many software applications that

interact with one another. In the past SOAP web services
were created to facilitate this application communication.
As systems grew more complex, the creation and
maintenance of SOAP-based services became very time
consuming. The programmer needs to create the service
logic, service interface, WSDL, complex type mapping
and client stub code and then make sure these pieces are
in sync when modifying the service (Fig. 2).

Figure 2: REST and Java Jersey allow for a simple
service architecture that can return data in numerous
formats for a variety of application uses.

Tools exist to help with this, but it still requires a lot of
work to maintain. Because of these complexities the NIF
started using RESTful services. Using Jersey, a RESTful
Web Services Java framework, the NIF was able to
quickly create web services that return data in numerous
formats such as XML or JavaScript Object Notation
(JSON). With Jersey, a single Java class can be exposed
as a web service which is much easier to maintain than
the multiple pieces associated with SOAP development.
By switching to RESTful services, developers have been
able to simplify the interfaces between applications as
servers and clients can have a single service entry point.

Web GL and HTML5 Canvas
WebGL is an open API that uses HTML5 Canvas to

display 3D graphics. Compatible with most modern
browsers, code is written in JavaScript and works directly
with HTML. As HTML5 continues to gain momentum
more and more 3D JS libraries such as three.js, sceneJS,
and canvas3D are being created to help abstract the
details of WebGL, making it easier to add it to
applications. Using WebGL the NIF created, The Target
Viewer, an application that allows users to visually
inspect the target in 3D. During a NIF laser shot a laser
pulse is split into 192 separate beams, amplified, and
directed to a BB gun pellet-sized target. Prior to an
experiment it is critical that the target is in pristine
condition as a small particle on the target can change the
outcome for the entire experiment. The Target Viewer
combines hundreds of images and data points and
constructs an interactive 3D view of the target. Users can
zoom, rotate, pan, and query specific sites for information
and view high resolution images (Fig. 3). Using WebGL
the NIF is able to confidently know the true condition of
the target.

Figure 3: An interactive 3D WebGL tool that maps
hundreds of images around a NIF target allowing users to
zoom, rotate, pan, and query specific sites for information

Oracle Application Express (APEX)
A very common application developed for the enterprise,
is the creation of a CRUD (create, read, update, delete)
interface on top of a database. The primary function of
these applications is the manipulation and visualization of
data. Developing bespoke applications can be a
significant drain on resources. NIF software engineers

Proceedings of ICALEPCS2013, San Francisco, CA, USA THCOAAB05

User Interfaces and Tools

ISBN 978-3-95450-139-7

1059 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

selected the Oracle Application Express (APEX)
framework to fulfil this need for CRUD applications.
APEX is a rapid application development tool built on-
top of the Oracle Database [3]. APEX provides a browser
based development environment along with many
different user interface tools and widgets. Application
templates and themes create for a common user
experience across all applications and devices, both
desktop and mobile. One feature that has proved
tremendously successful is the interactive reporting
capabilities within APEX. The interactive reports give
the end user control to customize, build, and publish their
own reports [4].

Figure 4: Advanced user-driven interactive reporting with
APEX along with a custom plugin augmenting the
framework to achieve Excel-like fixed headers and
columns.

Users can sort and filter data, select specific columns,
highlight rows, create new computational columns,
aggregate data, and build charts from the data (Fig. 4).
This feature alone has saved countless hours, reducing
development time while increasing customer satisfaction.
Previously developers would spend a lot of time creating
and building custom reports for users. Now users can
create their own reports allowing software developers to
focus on other tasks. Powered by PL/SQL and jQuery,
APEX allows developers to extend upon the framework
and build custom components and widgets to fit their
unique business needs. This is extremely valuable to
rapid development; the novice user only needs a web
browser to get started and has a wide array of user
interface options to choose from while the more
experienced developer can extend its functionality and
build custom objects to fit distinct business needs. An
application at the NIF that demonstrates this is the Shot
Planner, used to help schedule and plan shots. Users
required two advanced features that were not directly
available in APEX; Excel-like reporting with fixed
headers and columns, and an advanced drag and drop
calendar. To create the Excel-like fixed headers and
columns, a plugin was written using jQuery that extended
upon APEX’s interactive reporting capabilities (Fig 4).
As a plugin, this feature can now be easily reused in any
interactive report. The second task was to create a
complex calendar display of the NIF shot data. APEX
provides a drag and drop calendar, but managing the NIF
shot schedule required a much more customizable UI.
Again using jQuery and APEX RESTful reports, the NIF

created a custom calendar framework to fit their needs.
Both the custom table and calendar components are
objects that can be reused inside any other web or APEX
application. Using APEX, the NIF can now deliver
feature rich applications that used to take months to build,
in a matter of days.

WebSockets and Node.js
The web has been built around a request/response
paradigm. A client web browser requests a web page and
then the server responds presenting the desired page or
data. There are many times when this model falls short
with the inability for the server to send data to the client
in the very moment when it knows about the data. Over
the years different server side “push” frameworks have
emerged, but all just build on top of the request/response
model using different techniques to open a connection
between the server and web browser [5]. The
introduction of HTML5 WebSockets changes this model
as it creates a persistent connection between the client and
the server allowing both parties to communicate with
each other at any time. This concept of applications being
able to push data directly to users and other applications
the instant it becomes available is revolutionary and
something the NIF wanted to use. A common problem
the NIF and many other applications face is the inability
to communicate directly with the currently logged in
users. There are times when applications need to be taken
offline for maintenance or a message needs to be sent to
users of a specific application. In the past the best
notification mechanism was an email sent to all known
users of the given application. This approach has
numerous flaws: the user might not be reading his/her
email at that time or a particular user might not even be
included in the email. To address this problem the NIF
used WebSockets along with a Node.js server and created
an application called Nodeify. Node.js is a server-side
asynchronous event-driven system written in JavaScript
that can run across distributed devices [6]. The ability to
create scalable network applications while using the
common JavaScript language made Node.js the perfect
answer for real-time application communication.

Figure 5: A Real-time event driven notification system
built for scalable network applications using WebSockets
and Node.js

Nodeify allows for messages to be sent to users or
applications (Fig. 5). Once sent, these messages are

THCOAAB05 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1060C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

pushed directly to the clients without the client needing to
refresh their screen. Nodeify’s most notable feature is
that it can easily plug into any existing web or thick client
Java application. With a simple file include applications
are able to push messages to other applications and clients
in real-time. This universal design enabled the NIF to
provide notification capabilities to all of its applications
without needing to write custom code for each
application, saving time and money.

SUMMARY
Web 2.0 technologies deliver many tools and frameworks
that help to create dynamic and responsive applications.
A strong knowledge of the latest JavaScript libraries has
helped NIF developers create quick, feature-rich user
interfaces. Adopting a RAD framework, like APEX, has
sped up development time while enhancing user
satisfaction with its custom reporting features. Applying
HTML5, WebGL and WebSockets has provided a level of
interaction with our users that was previously unfeasible.
Identifying the proper technologies and their use in
delivering application solutions has helped the NIF
successfully respond to the ever-changing customer
demands and business environment.

REFERENCES
[1] Heraclitus, Greek Philosopher
[2] “Market share trends for JavaScript libraries for

websites”;
http://w3techs.com/technologies/history_overview/ja
vascript_library/all; http://www.jquery.com

[3] “Oracle Application Express: Overview;
http://www.oracle.com/technetwork/developer-
tools/apex/overview/index.html

[4] “Oracle Application Express: Interactive Reporting”;
http://www.oracle.com/technetwork/developer-
tools/apex/application-express/irrs-083031.html

[5] P. Lubbers and F. Greco, “HTML5 Web Sockets: A
Quantum Leap in Scalability; for the Web”;
http://www.websocket.org/quantum

[6] Node.js website; http://nodejs.org

Proceedings of ICALEPCS2013, San Francisco, CA, USA THCOAAB05

User Interfaces and Tools

ISBN 978-3-95450-139-7

1061 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

