
APPLICATIONS OF MODERN PROGRAMMING TECHNIQUES IN
EXISTING CONTROL SYSTEM SOFTWARE*

B. Frak, T. D’Ottavio, W. Fu, L. Hoff, S. Nemesure,
Brookhaven National Laboratory, Upton, U.S.A.

Abstract
The Accelerator Device Object (ADO) specification

and its original implementation are almost 20 years old. In
those last two decades ADO development methodology
has changed very little, which is a testament to its robust
design [1], however during this time frame we've seen
introduction of many new technologies and ideas, many
of which come with applicable and tangible benefits to
control system software. This paper describes how some
of these concepts like convention over configuration,
aspect oriented programming (AOP) paradigm, which
coupled with powerful techniques like bytecode
generation and manipulation tools can greatly simplify
both server and client side development by allowing
developers to concentrate on the core implementation
details without polluting their code with: 1)
synchronization blocks 2) supplementary validation 3)
asynchronous communication calls or 4) redundant
bootstrapping. In addition to streamlining existing
fundamental development methods we introduce
additional concepts, many of which are found outside of
the majority of the controls systems. These include 1)
ACID transactions 2) client and servers-side dependency
injection and 3) declarative event handling.

INTRODUCTION
Java ADO framework was created to supplement

existing C++ RAD based development environment. Its
main objective is to simplify the Accelerator Device
Object development without sacrificing any of the
existing functionality. Java ADO codebase is streamlined
and stripped from redundant calls in the user layer. At the
same time it’s more transparent than its C++ counterpart,
which hides some of its complexity behind its domain
specific language.

The framework is geared towards Java developers who
have at least basic understanding of Collider Accelerator
development infrastructure, but are not necessarily
experienced RAD developers. On the other hand a
proficient ADO designer will benefit from a much faster
development cycles. The framework is well documented
with its own set of wiki pages and numerous examples in
our code repository.

Containers running Java ADOs are expected to run in a
middleware layer between the front-end computers and
the client space. They are a natural fit in systems, which
run thin clients and need a persistent business logic
backend, but they can also be used as drop-in
replacements in place of existing ADO managers.

CONCEPTS AND TECHNIQUES
 Java ADO design leverages several concepts and

technologies to achieve the aforementioned objectives.
Three of them discussed in this section have been around
for a number of years and have been tried and tested in
both academic and commercial settings.

Convention over Configuration
This fairly obvious, but at the same time very powerful

software paradigm simply seeks to cut down on the inherit
code complexity without sacrificing any flexibility by
removing any exceptional and uncommon states from the
initial design matrix [2]. The conventions have been
carefully selected based on historical usage. Once set,
they are for all intents and purposes immutable since new
defaults could negatively impact existing applications.
Java ADO framework attempts to conform to this
standard in the following ways:
• It does not use any external configuration files. All

required and optional configuration is weaved in the
device object code as Java annotations.

• ADO parameters features are extracted from these
annotations. Any missing information is inferred
from the Java field context, which defines the
parameter. This information includes, but is not
limited to: data types, parameter and property names,
category type and features. Code snipped, which
illustrates this behavior is shown in Fig. 1. Note that
both parameters end up with the same feature set –
the top one has its name, type, count and category
resolved at runtime from both the field context and
the associated annotation, while the bottom
declaration has its features explicitly declared.

• Default runtime behavior associated with a device
object’s state change automatically triggers a number
of predetermined actions – some of them are
mandatory and cannot be overridden, while others,
which inherit their behavior from the base
configuration, can. For example asynchronous
notification falls into the latter category. By default
all assignments, which change a value of an ADO
property generate a system wide notification to all
clients subscribing to this property. This behavior is
an accepted default, but it can be overridden in three
different ways (Fig. 2.)

 __

*Work supported by Brookhaven Science Associates, LLC under contract
no. DE-AC02-98CH10886 with the U.S.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC158

Software Technology Evolution

ISBN 978-3-95450-139-7

479 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 1: Device object parameter / property
configuration.

Figure 2: Explicit configuration of asynchronous update.

Aspects
Java ADO framework is built in its entirety around the

core concepts of aspect-oriented paradigm [3]. From the
moment server starts bootstrapping its devices to the last
shutdown call, advices, which cut across the critical code
sections, perform validation, trigger asynchronous
updates, cache values and manage transactions. Without
them Java ADO framework would dissolve device object
code into a redundant and overstated disarray of calls to
the base class, where business logic becomes a second-
class citizen. Developers should not be concerned with
device to server or vice versa communication or state
management mechanisms unless he or she wants to
explicitly change their default behavior. Well designed
and placed join-points combined with a chain of single-
task focused advices can almost in its entirety eliminate
this code pollution, and at the same time make the code
easier to manage and maintain. Additionally, because of
AspectJ’s point-cut flexibility, Java ADO framework
essentially removes any need for value object wrappers in
the device object layer. From a developer perspective
every piece of ADO’s stateful data can be a primitive – be
it a scalar or an array, which is just one of many examples
where AOP helps with a reduction of vertical layers
developers need to be concerned about. This in turn
promotes code readability and its general transparency.

The principal beneficiaries of AOP are without a doubt
device objects parameter setters. Every parameter
assignment is either surrounded or followed by the six
core aspects (Fig. 3):
• Around set transactional advice, which starts,

suspends or resumes current transaction (if any).
This aspect is also responsible for any possible
rollbacks triggered by a potential unchecked
exception.

• Around set validation advice, which runs a
sequence of mandatory validators followed by a set
of custom ADO specific checks. Any failure
throws an appropriate exception, which
discontinues both the validation and AOP
processing for this set.

• Around set advice, which actually sets a value of
the parameter.

• After returning asynchronous advice, which
notifies any clients subscribing to the parameter
about its state change.

• After returning caching advice, which stores a new
value on a disk.

• After returning notification advice, which alerts the
alarm system about parameter’s transition to
another alarm level.

Figure 3: Assignment advice chain.

Note that the last three advices have no dependency on
each other and always run in parallel. This set of actions
is applied universally to all assignment operations, where
left hand side operand is a field marked with the
AdoParameter annotation. The aforementioned benefits
are directly related to call context irrelevance during the
assignment operations. For example neither call past nor
its future plays any role when determining validity of the
assignment – the only thing that matters at that time is a
state of the device object. This “tight” coupling
guarantees that all ADO parameters are always consistent
- it also means that developers will have a harder time
shooting themselves in a foot.

Dependency Injection (DI)
Java ADO framework relies on DI while bootstrapping

both the sever container as well as its device objects. The
former relies on DI supplemented by a bytecode generator
to instantiate and initialize appropriate class proxies. This
process implements common base class’ abstract methods
and generates additional constructs, which supplement the
built in validation subsystem.

ADO instances utilize dependency injection for their
local or remote device dependency. In either case

MOPPC158 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

480C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

developers simply declare a base interface, which gets
filled in by the framework during the initialization stage.
Fig. 4 shows an example where the bootstrapping process
makes a decision on which type of Ado instance to inject
based on the supplied name. Dependency injection
implemented in the Java ADO framework is fully context
driven. Developers can specify additional parameters,
which alongside the supplied name will help the
underlying injector with its evaluation. Any unresolved
names, unless marked as optional, will terminate the
device object’s container.

Figure 4: ADO instance injection.

IMPLEMENTION DETAILS
When combined the concepts and techniques described

in the previous section open up new possibilities for
developers designing Java accelerator device objects. This
section will cover a few of these features, which are either
not available in the existing C++ ADO framework or their
implementation differs substantially from the current
design.

Transactions
Java ADO framework implements a standard ACID-

like transactional model seen in many popular databases.
ACID [4] convention is always guaranteed within server
containers running Java ADO implementation. When
interacting with legacy systems the framework has to
commit device object values within any running
transactions, which means that they will be available for
reading before transactions commit or rollback their
actual states. Rollbacks are still automatic, however the
ACID guarantee is no longer applicable. From an API
perspective the implementation borrows heavily from the
Enterprise Java Bean 3.x model. ADO developers mark
methods as transactional using an AdoTransactional
annotation. For a finer grained control they also have an
option of starting and terminating transactions within
methods. Declarative model supports three attributes,
which control the transaction context propagation.
• REQUIRED – If invoked outside a transactional

context the container will start a new transaction,
which will commit or rollback at the end of the
method marked with the associated
AdoTransactional attribute. If the current thread is
already in a transactional context the method
executes within that context.

• NOT_SUPPORTED – If invoked with a
transactional context current transaction is
suspended for the duration of this method call. If
invoked outside the context this attribute has no
effect.

• SUPPORTS – If invoked within an active
transaction it behaves like the REQUIRED case.
Invocation outside a transactional context,
analogously to the NOT_SUPPORTED attribute,
has no effect.

Transactions in the Java ADO framework simplify the
state management of local and remote objects, primarily
because any rollbacks caused by invalid states or failures
are automatic. Some of them maybe happening without
ACID guarantees, but that’s an acceptable penalty when
dealing with legacy systems. Fig. 5 shows an example of
an automated versus manual state management. In this
example both intS and longS parameters have strict
validation checks applied to their values, which might
trigger an exception on assignment. We want to make
sure that we keep the values of both parameters
synchronized, which means in case of an error we want to
revert back to a previously known valid state.
Transactional method allows us to achieve this objective
in just two lines of code. Manual management requires
five times as many lines. On top of that we might be
modifying values that don’t need to be rolled back. For
example if the intS assignment triggered the exception we
do not need to roll back longS. To fix that we’d need to
add additional checks to the manual method.
Transactional approach suffers from none of those
drawbacks.

Figure 5: Java ADO transaction example.

Value Bonding
Historically interaction with the remote control points

has been reliant on Request objects, which expose a
standard set of RPC methods available on the remote
systems to the clients. Natural extensions to this approach
are client side object proxies, which realize remote
instances as local constructs (Fig. 4). Java ADO
framework allows both types of approaches. In addition it
allows for a third type of interaction - and that is value
bonding.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC158

Software Technology Evolution

ISBN 978-3-95450-139-7

481 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

This feature allows ADO developers to closely couple
local field value, which could be a device object
parameter, with a parameter in another ADO instance.
The binding can be either bidirectional or unidirectional.
This behavior depends on the AdoBond annotation
applied to the local field (Fig. 6). “Incoming” parameter
controls the flow of inbound data. If set to true all reads
on a local field marked with this annotation are
guaranteed to have the latest value of the bonded
parameter. Analogously setting the “outgoing” flag to true
guarantees that the other side of the bond will have its
value updated to match the just updated local side.

Figure 6: ADO bonding annotation declaration.

Value bonding fits nicely in the middleware platform
model, where Java ADO managers often expose or update
data from a lower tiered systems either in an unchanged
or computed format. Fig. 7 shows an example of outgoing
bond, where remote side has its value updated in tandem
with its local counterpart. The update occurs in the post
assignment advice, which runs synchronously with the
operation. Finally bonds like all other framework
constructs participate in the ADO transactional model.

Figure 7: Value bond in action.

SUMMARY
Java ADO framework provides an attractive alternative

for seasoned RAD developers, who are not willing to
sacrifice any features, but at the same time want to gain a
new perspective on device object development model.
The framework is even a better fit for developers, who
had limited exposure to the ADO design model and who
are building a system, which could benefit from a stateful
backend.

REFERENCES
[1] L.T. Hoff and J.F.Skelly, Accelerator Devices at

Persistent Software Objects, Nucl. Instr. and Meth. in
Phys. Res. A 352 (1994),

[2] N. Chen, Convention over Configuration (1996)
http://softwareengineering.vazexqi.com/files/pattern.
html

[3] G. Kiczales, J. Lamping, C. Lopes, J. Hugunin, E.
Hilsdale, C. Boyapati “Aspect-oriented
Programming”, (1999)

[4] T. Haerder, T. A. Reuter, "Principles of transaction-
oriented database recovery". ACM Computing
Surveys 15 (4): 287, (1983)

MOPPC158 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

482C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

