
MATLAB OBJECTS FOR EPICS CHANNEL ACCESS

J. Chrin, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract
With the substantial dependence on MATLAB for appli-

cation development at the SwissFEL Injector Test Facility
(SITF), the requirement for a robust and more extensive
EPICS (Experimental Physics and Industrial Controls Sys-
tem) Channel Access (CA) interface became increasingly
imperative. To this effect, a new MATLAB Executable
(MEX) file has been developed around an in-house C++
CA interface library (CAFE), which serves to expose com-
prehensive control system functionality to within the MAT-
LAB framework. Immediate benefits include support for
all MATLAB data types, a richer set of synchronous and
asynchronous methods, a further physics oriented abstrac-
tion layer that uses CA synchronous groups, and compila-
tion on 64-bit architectures. An account of the MOCHA
(MATLAB Objects for CHannel Access) interface is pre-
sented.

MOTIVATION
MATLAB [1] is an established fourth-generation pro-

gramming language and numerical computing environment
that provides matrix operations, algorithm procedures, data
plotting tools and a Graphical User Interface (GUI) frame-
work, as well as support for Object Oriented Programming
(OOP). Its use for the control and operation of particle ac-
celerators has surged in recent times (Fig. 1), initiating spe-
cial focus within the accelerator community [2]. It is also
the principal choice of physics application developers at
the SwissFEL Injector Test Facility (SITF) [3]. While a
critique of MATLAB is not intended here, it is acknowl-
edged that the conciseness of the code adds to its ability to
program rapidly and effectively. This is particularly en-
ticing during the SITF commissioning phases [4] where
novel applications may be quickly developed and put to
the test. The consequential increase in the usage of MAT-
LAB, coupled with the need to perform a number of essen-
tial measurements, however, inevitably led to a reappraisal
of the MATLAB interface to the underlying Experimental
Physics and Industrial Controls System (EPICS) [5] and its
communication protocol, Channel Access (CA) [6]. The
need for a stable and more extensive interface to that pro-
vided by the initially adopted MATLAB Channel Access
(MCA) package [7, 8], became apparent. The following
lists a number of necessary prerequisites.

• Support for all MATLAB data types.

• Incorporation of CA synchronous groups into MAT-
LAB objects for specific operations such as machine
snapshots and the acquisition of orbit data.

• Improved CA reconnection management to ensure
stability and robustness in every eventuality.

• Compilation on 64-bit Linux architectures.

In the meantime and per contra, a new C++ CA inter-
face library, CAFE [9], has recently been developed in-
house that provided the required underlying functionality.
Since CAFE further sought to act as a CA host library to
scripting and domain-specific languages, the development
of bindings to MATLAB presented itself as a natural exten-
sion. To achieve this necessitated gaining knowledge and
experience in the use of the MATLAB C Application Pro-
gramming Interface (API). A dynamically loadable MAT-
LAB Executable (MEX) file could then be constructed that
would allow CAFE routines to be called from within the
MATLAB framework, in the same manner as MATLAB
built-in functions.

The following recapitulates CAFE’s functionality before
describing how the new MOCHA (MATLAB Objects for
CHannel Access) MEX-file is created. The MOCHA syn-
tax is then presented and MATLAB’s Object Oriented Pro-
gramming (OOP) capability is briefly exemplified with a
specialized MOCHA aware MATLAB class.

Figure 1: Approximate number of ICALEPCS papers cit-
ing EPICS together with a given language. The figure is
indicative of trends only.

THE CAFE IMPLEMENTATION
CAFE is a C++ library that offers a multifaceted inter-

face to the native C-based CA API. It provides remote ac-
cess to EPICS Process Variables (PVs), which encapsulate
the EPICS channel controls data, residing in the Input Out-
put Contoller (IOC) or other devices hosting a CA server.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC146

Software Technology Evolution

ISBN 978-3-95450-139-7

453 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Functionality includes synchronous and asynchronous in-
teractions for both individual and collections of PVs. At its
core is a Boost multi-index container [10] which takes own-
ership of the data object (CAFEConduit) elements, which
store all the current details of the associated channel. Call-
back functions, which have been implemented for all op-
erations involving CA connection handlers, event handlers
and access right handlers, report their data to the CAFE-
Conduit object. The container also provides multiple, dis-
tinct interfaces that allow for fast retrieval and modification
of the element’s data. Stability and robustness are thus ac-
complished by ensuring that connectivity to PVs remains
in a well defined state and results of all operations are cap-
tured and reported with integrity.

Figure 2 shows how the CAFE method first queries the
CAFEConduit object within the container to assess the
channel’s current state. Only if the specified preconditions
are met (e.g. channel is connected) is the input data verified
and the message sent over the network (as for handle 1 in
Fig. 2). If otherwise, the request is declined and an error
message returned to the client (as for handle 4 in Fig. 2).

With the prescribed controls functionality in place within
the CAFE library, the task of the MOCHA MEX-File
is to provide the necessary CAFE bindings to MATLAB
(Fig. 3).

Figure 2: A schematic diagram of CAFE’s multi-index
container composed of two indices, the handle (or object
reference) and the process variable name. CAFE methods
first query the CAFEConduit object within the container,
shown here to be indexed by handle, to verify the channel’s
current state before deciding to send a message to the CA
server hosted by the IOC.

THE MOCHA MEX FILE
The groundwork for MATLAB CA connectivity had, in

many respects, already been laid by the MCA package.
MOCHA, however, unlike MCA, implicitly shelters un-
derlying CA routines from the MEX-file. Since these are
delegated to the CAFE library, the resulting MEX-file is

greatly simplified. A similar approach is adopted by the
labCA package [11] where multiple MEX-files provide in-
terfaces to the long established C-based EZCA (E-Z Chan-
nel Access) interface [12]. It is thus within MOCHA that
the MATLAB-specific techniques in interpreting input data
and packaging return data are to be mastered. The soft-
ware strategy for constructing the MOCHA MEX-file is
described.

Figure 3: The MOCHA MEX-file provides the gateway
from MATLAB to the CAFE library. Functions provided in
the MEX-file are thus exposed to the MATLAB workspace.

Data Flow
The MEX-file consists of a gateway routine, named

mexFunction, where variables are passed into the func-
tion through input and output arguments. The mexFunction
syntax is:

void mexFunction (int nlhs, mxArray *plhs[], int

nrhs, const mxArray *prhs[])

where nhls, nrhs refer to the number of output and in-
put parameters, respectively, which in the resulting MEX-
file syntax corresponds to the number of parameters on
the left-hand and right-hand side of the MEX-file func-
tion (as will be evident from Listing 1 ); plhs, prhs refer
to an array of pointers to the input and output parameters
(of length nlhs and nrhs) which themselves are encapsu-
lated in MATLAB’s underyling fundamental data type, the
mxArray. All MATLAB’s variables, namely scalars, vec-
tors, matrices, strings, cell arrays, and structures are stored
as mxArrays.

Source code is written using the MATLAB C API which
comprises two libraries. The MX Matrix library pro-
vides the mx* functions to read/write input/output argu-
ments from/to MATLAB, while the MEX library provides
the mex* functions to perform operations in the MATLAB
environment (and access global variables).

The MOCHA MEX-file is constructed such that the first
input argument identifies the CAFE method to be invoked,
while the second input argument is a handle to the previ-
ously obtained CAFEConduit object for the relevant EPICS
PV. Any input data arguments then follow. The principle
steps of the data flow within the MEX cycle are as follows.

• The input MATLAB data types are validated using the
mxIs* functions and their data is extracted with the
mxGet* functions.

• The first input argument is matched to an index in
a switch statement that identifies the corresponding
CAFE method.

MOPPC146 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

454C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



• The MATLAB data types of any remaining input ar-
guments are validated and their data is extracted.

• mxCreate* functions are used to create the MATLAB
array for output arguments (most methods return at
least a status).

• The corresponding CAFE function is invoked, with in-
put and output data pointers passed as parameters.

Establishing communication between CAFE methods
and the MATLAB workspace is thus largely reduced
to mapping MATLAB data types to their equivalent
CAFE/C++ data types and vice-versa. Once accomplished,
and after implementing just a few CAFE methods, a def-
inite pattern emerges that renders the making of a new
MATLAB CA MEX-file refreshingly uncomplicated. List-
ing 1 shows the MOCHA syntax, for selected set, get and
monitor methods. Note that a single set method can be ap-
plied for all MATLAB data types. Similarly the getStruct

method will return a structure with value(s) given in the na-
tive data type (along with the alarm status, alarm severity
and timestamp).

CAFE Exceptions
CAFE is equipped with its own custom exceptions

for reporting CA and CAFE-specific errors. An unex-
pected predicament arose, however, with the realization
that CAFE’s structured exceptions were not being caught
from within the MEX-file, unless relucantly classified as
an unknown exception. This behaviour could be attributed
to the MATLAB version linker script, mexFunction.map.
MATLAB’s proposed solution was to link against a static
version of the MEX library or to create a wrapper library
that does not need to conform to the mexFunction.map.
Since the latter approach is more inclusive, the previous
contents of the mexFunction were moved to a separate li-
brary that could be easily called directly from the MOCHA
MEX-file. The MOCHA mexFunction thus calls a single
function embodied in a separate library.

Compilation on 64-bit Architectures
MEX-files constructed on 32-bit platforms can be sim-

ilarly built on 64-bit architectures, without modification
to source files, by enabling a 32-bit compatibility layer
through the -compatibleArrayDims flag in the mex build
command. To benefit from MATLAB’s 64-bit indexing
functionality, however, requires an update to the MEX
source code, particularly with regard to the usage of the
MX Matrix Library. To properly handle large arrays, vari-
ables used as array sizes or indices were converted from
the 32-bit int type to the mwSize and mwIndex MATLAB
preprocessor macros, which grant cross-platform flexibil-
ity. Similarly, 64-bit MX Matrix functions were iden-
tified and their signatures re-examined to ensure correct
types are assigned to the input/output arguments. The
MEX-file is finally compiled using the large array han-
dling API, which is explicitly enabled by the inclusion of

Listing 1: The MOCHA Syntax

% retrieve reference handles

handle = mocha(’open’,’pvName’);

groupHandle = mocha(’openGroup’,’gName’);

% returns value(s) in native data type

dataStruct = mocha(’getStruct’,handle);

[val,status] = mocha(’get’,handle); %returns double

[val,status] = mocha(’getString’,handle);

% synchronous group

[values,statae,isStatusOK] = mocha(’getGroup’,

groupHandle);

% control display data

ctrlStruct = mocha(’getCtrlStruct’, handle);

status = mocha(’set’,handle,data); % all MATLAB types

% initiate a monitor and invoke ’action’ on update

status = mocha(’monitor’,handle,’action’);

% returns latest cached value from monitor (or get)

[val,status]=mocha(’getCache’,handle);

status = mocha(’close’,handle); % close channel

mocha(’close’); % terminate all CA connections

the -largeArrrayDims flag in the mex build. In a future
MATLAB release, this flag will become the default option.
The implementation of these changes to the MEX-file also
renders the code platform (i.e. 32-bit, 64-bit) independent,
thereby dispensing with the need to maintain a separate
code base for building 32-bit MEX-files.

The 64-bit Scientific Linux 6 architecture is now stan-
dard in the SITF control room [13].

MATLAB OBJECTS
MATLAB releases since 2008 provide support for

OOP. Features include classes, pass-by-value and pass-by-
reference semantics, access control for methods and prop-
erties (public, private, protected), multiple inheritance, ex-
ceptions, operator overloading, and more. Of particular in-
terest here is the use of class definition files which define
object properties (i.e. data), methods and events. Pass-by-
reference semantics is obtained by sub-classing the handle

class which provides Listeners and Events that may be re-
spectively configured to monitor object properties and trig-
ger an associated event (or action). These possibilities can
be put into good effect to produce MOCHA aware classes
for certain specific operations, such as the acquisition of
orbit data (Listing 2) and machine snapshots, though data
verification here was undertaken within the MEX-file to en-
hance performance. Typically these objects make use of
CAFE’s abstract layer that addresses related data sets as
a single logical unit. An XML configuration mechanism
is used for the initialization of such group/collection ob-
jects and their data may be retrieved or set with a single
method invocation. Meta data related to group/collection
members, such as node positions, are extracted, upon ob-
ject initialization, from CAFE’s interface to an XML-based

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC146

Software Technology Evolution

ISBN 978-3-95450-139-7

455 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Listing 2: A MATLAB Class Definition File for Orbit Data

classdef injectorOrbit < handle

properties (SetAccess = private)

gName=’gDBPM’; gHandle=0; bpmNames=’’; s=0;

x=0; y=0; I=0; isStatusOK=0;

...

end % properties

events

% listener defined in cafeErrorHandler class

cafeErrorReport

end % events

methods

function orbit = injectorOrbit();

orbit.gHandle = mocha(’openGroup’,orbit.gName);

[orbit.bpmNames,orbit.s] =

mocha(’getStaticData’,’cDBPM’,’master.xml’);

cafeErrorHandler.add(orbit)

return

end % function orbit

function get(orbit)

[orbit.x,orbit.y,orbit.I,...,orbit.isStatusOK]

= mocha(’getOrbit’,orbit.gHandle);

if orbit.isStatusOK !~ 1

notify(orbit,’cafeErrorReport’);

end

return

end % function get

end % methods

end % classdef

SITF accelerator database, also referred to as the master
XML accelerator file [14]. MOCHA aware classes have
also been provided to retrieve/set controls data or to start
monitors which cache updated values and, following the
convention in MCA, may optionally execute a MATLAB
accessor script to e.g. update a widget value.

Interestingly, although the object oriented capabilities
appear to be sufficiently comprehensive to allow estab-
lished design patterns [15] to be effectively applied, they
are yet to be fully exploited here. This may possibly be
due to the observation that the core functionalities in MAT-
LAB remain in the procedural style, inclining developers
to program in a similar ‘function calls’ capacity.

DISCUSSION
MOCHA is a straightforward MEX-file that provides

CA functionality to MATLAB through the CAFE interface.
MOCHA in itself should not be viewed in isolation, but
rather also as a demonstration of CAFE’s suitability to act
as a host CA interface for other C/C++ based declarative
and fourth-generation languages. In this respect, MOCHA
is a natural extension to its CAFE roots driven by MAT-
LAB user requirements at the SITF. The resulting boundary
between the CA components, which are designated to the
CAFE library, and the specifics of the MATLAB API, en-

sures a code base that is inherently convenient to maintain.
Further developments include a refactoring of the CAFE
C++ code with the intent of making the internal structure
more comprehensible and easier to interpret. The corre-
sponding MOCHA MEX-file may then finally be consol-
idated to produce a general purpose MATLAB CA inter-
face. In the meantime, the experience gained to date in
programming CA clients and constructing MEX-files has
allowed us to provide a stable, robust and extensive MAT-
LAB interface to EPICS that serves the needs of application
developers at the SITF.

REFERENCES
[1] MATLAB®, http://www.mathworks.com

[2] J.W. Corbett, “MATLAB Workshop Report”, PCaPAC
2010, Saskatoon, Saskatchewan, Canada, Paper Code ID:
THRA01, presentation only, and references therein.

[3] “SwissFEL Injector Conceptual Design Report”, Ed. M. Pe-
drozzi, PSI Report Nr. 10-05, July 2010.

[4] T. Schietinger, “Update on the Commissioning Effort at the
SwissFEL Injector Test Facility”, LINAC 2012, Tel-Aviv,
Israel, pp. 504–506.

[5] EPICS, http://www.aps.anl.gov/epics/

[6] J.O. Hill, R. Lange, “EPICS R3.14 Channel Access Refer-
ence Manual”,
http://www.aps.anl.gov/epics/docs/ca.php

[7] T. Terebilo, “Channel Access Client Toolbox for MAT-
LAB”, ICALEPCS 2001, San Jose, California, USA,
pp. 543–544.

[8] MATLAB Channel Access (MCA),
http://sourceforge.net/apps/trac/epics/wiki/

MatlabChannelAccess

[9] J. Chrin, M. Sloan, “CAFE, A Modern C++ Interface to the
EPICS Channel Access Library”, ICALEPCS 2011, Greno-
ble, France, pp. 840–843.

[10] Boost Multi-index Containers Library,
http://www.boost.org/libs/multi_index/

[11] T. Straumann, “labCA - An EPICS Channel Access In-
terface for Scilab and Matlab”, Internal Document 2003,
SLAC National Accelerator Laboratory, updated June 2010,
http://www.slac.stanford.edu/~strauman/labca/

[12] N.T. Karonis, “EZCA Primer”, Internal Document, Ar-
gonne National Laboratory, Jan. 1995,
http://www.aps.anl.gov/epics/extensions/ezca/

[13] P. Chevtsov et al., “Status and Perspective of the Swiss-
FEL Injector Test Facility Control System”, ICALEPCS
2013, San Francisco, California, USA, Paper Code ID:
MOPPC112, These Proceedings.

[14] J. Chrin, L. Hubert, R. Krempaska, G. Prekas, T. Pelaia,
“XML Constructs for Developing Dynamic Applications or
Towards a Universal Representation of Particle Accelerators
in XML”, IPAC 2011, San Sebastián, Spain, pp. 2295–2297.

[15] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design
Patterns, Elements of Reusable Object-Oriented Software”,
Addison-Wesley (1994), ISBN 0-201-63361-2.

MOPPC146 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

456C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution


