
MASS-ACCESSIBLE CONTROLS DATA FOR WEB CONSUMERS

B. Copy, R. Niesler, F. Tilaro, M. Labrenz, CERN, Geneva, Switzerland

Abstract
The past few years in computing have seen the

emergence of smart mobile devices, sporting multi-core
embedded processors, powerful graphical processing
units, and pervasive high-speed wireless network
connections (supported by WIFI or EDGE/UMTS). The
relatively limited capacity of these devices, when
compared to desktop computers, requires relying on
dedicated embedded operating systems (such as Android,
or iOS), while their diverse form factors (from mobile
phone screens to large tablet screens) require the adoption
of programming techniques and technologies that are both
resource-efficient and standards-based for better platform
independence. We will consider the available options for
hybrid desktop/mobile web development today, from
native software development kits (Android, iOS) to
platform-independent solutions (mobile Google Web
toolkit, JQuery mobile, Apache Cordova, Opensocial).
Through the authors' successive attempts at implementing
a range of solutions for LHC-related data broadcasting,
from data acquisition systems and LHC middleware such
as DIP and CMW, on to the World Wide Web, we will
investigate what are the valid choices to make and what
pitfalls to avoid in today’s web development landscape.

CONTROLS DATA ON THE INTERNET
Modern accelerator complexes such as CERN have

been relying for many decades on industrial control
systems. These off-the-shelf industrial components such
as Programmable Logic Controllers (PLCs) have proven
to be a cost-efficient and standard way to implement
critical processes such as CERN's LHC Cryogenics, the
Quench Protection System or CERN Experiments gas
control systems (ATLAS, ALICE, CMS, LHCb, Cloud).

The dissemination of data issued from such business-
critical systems is to this date certainly problematic :
While certain critical infrastructure owners have no
qualms about exposing their own equipment directly in
the Internet, without any form of protection from even the
most trivial network-based malicious users [1], even state-
of-the-art robust computer servers must nowadays be
placed under layers of protections and procedures before
they can be safely exposed on the Internet. One very
typical problem is the lack of resilience of these critical
industrial process control equipments when faced with
network traffic patterns : while such patterns would be
harmless for a typical network device such as a router, a
desktop computer or even a printer, a PLC on the other
hand may refuse more than 5 concurrent network
connections, or decide to delay certain parts of process
control in order to honour complicated network requests.
Another important aspect is that, no matter how robust
these critical equipments are, being able to disrupt their

operation remotely through simple denial-of-service
attacks, is simply unacceptable for operation-minded
assets such as CERN's LHC.

On the other hand of the spectrum, Web servers
deployed in an era of social media and bandwidth-
demanding mobile Internet access must be able to cope
with sudden and significant bursts of interest, if only for
limited periods of time. Cloud infrastructures such as the
Amazon Elastic Computing cloud or Cloudstack can
nowadays roll out tens or hundreds of virtual servers in a
matter of minutes, exposing high throughput NoSQL in-
memory databases and scalable web services to satisfy
millions of individual visitors.

We will now expose emerging solutions that have been
employed at CERN to bridge the gap between critical
industrial control systems employed at CERN and
massive numbers of world wide web originating visitors,
without any compromise in the matter of operational
availability and critical process integrity. We will first
examine what makes today's industrial controls data
unsuitable for mass-distribution and how to address this
shortcoming. We will then consider what makes web-
based data relevant in today's cloud and mobile IT
market. We will conclude by inspecting in detail an
implementation of these solutions, as applied to the
CERN LHC infrastructure as a whole.

DEVELOPING FOR MASS-ACCESS
A critical process controller equipment such as a PLC

is designed to operate in a sheltered environment :
moderate and predictable network traffic to and from the
equipment, a small number of concurrent network-based
accesses (less than a dozen), stable processing cycle times
in order to perform control with near real-time precision
are all essential parameters to ensure a reliable behaviour
from the controller's part.

Many such controllers are in operation inside the LHC
complex. Monitoring their activity and gathering the data
they expose requires the usage of industrial protocols,
from OLE for Process Control (OPC) to the CERN
Common Middleware (CMW) protocol, through STEP7
for SIEMENS PLCs or Modbus for Schneider equipment.
Such protocols have also been designed for sheltered
environments and peer-to-peer connections. Connecting
more than a dozen consumers to these data sources is
sometimes simply impossible, and most of the time too
risky, without opening the door to operational mistakes
and even malicious usages.

CERN for instance has made the choice of deploying a
secure Technical Network, which acts as a sheltered
production environment. Inside this CERN Technical
Network, trusted sets of equipments have been identified
to regroup network-capable devices that can speak to each

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC145

Software Technology Evolution

ISBN 978-3-95450-139-7

449 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

other. Such trusted sets are today limited to 10 members,
and are essential in ensuring that stray network traffic
(e.g. as observed at CERN : accidental multicasts,
corrupt network traffic...) and operational mistakes (such
as using the wrong IP address to query an equipment) do
not disrupt the operation of the LHC.

Given this context, it is unthinkable to distribute
process control data to hundreds or thousands of web-
based viewers without an intermediate layer that exposes
the following capabilities :
· Requirement 1 : Memory and network-efficient

data distribution with a push-style mechanism, so as
to cope with demand in a cost-efficient way.

· Requirement 2 : Scalability, replication and caching
capabilities, so as to minimize the load placed upon
critical process control devices.

· Requirement 3 : Support for efficient data format
that are native to web consumers, so as to bring the
amount of client-based data processing to a
minimum.

· Requirement 4 : Adaptation to a large number of
different data sources, for instance, support for
multiple proprietary industrial protocols.

Such requirements are certainly not limited to the data
distribution of industrial control systems: They have been
under scrutiny for the last few years and have given rise
to new web standards and implementation, starting in
2009, which have now matured into production quality
platforms.

Requirements 1 and 2 for instance can be nowadays
addressed with Websocket, a W3C standard web protocol
[2] that replaces HTTP Polling and provides server-push
capabilities. HTTP polling implies that a web client
should out of its own accord regularly ask the web server
for potentially new information. This in turn causes a
significant waste of concurrent TCP connections (of
which any network equipment only has a finite supply of),
and has two catastrophic effects :
· In cases where the server has little to say, in small

irregular bursts, a lot of empty meaningless traffic is
generated (of which an English translation would be
"Do you have something new for me ? No I don't.
Okay, thank you.").

· In cases where the server has a lot to say in large
regular amounts, the traffic is bunched into large
information sets that collate, for instance, the entirety
of the last five seconds of server activity - forcing the
client to cope with it in one single go, instead of
small increments.

Websockets [2] on the other hand offer web servers a
way to contact web clients on demand, in an HTTP-
friendly way (without forcing web server administrators
to open holes in their firewall for instance). Only when
the server has something to say does it need to open a
connection to the client. When it does, it can efficiently
replicate the information to all the web clients on its list
of interested parties, allowing a memory and I/O efficient
implementation.

Websocket, along with alternatives such as Server-sent
Events (SSE), are protocols that have been gradually
benefited from adoption since 2009, up to the point where
70.52 % of World Wide Web users (including mobile
devices) can to date benefit from this technology out of
the box [3].

For web clients that do not support websockets, it is of
course possible to fall back on less efficient, but still
tolerable approaches, such as HTTP polling and long-
lived connections.

The Atmosphere Framework is a technology that
implements memory-efficient, websocket-compatible data
broadcast mechanisms. Atmosphere is being standardized
and integrated as part of the Java Enterprise technology
stack (JSR-356 [4]).

Requirement 3 is typically addressed with a
combination of two new de-facto web standards,
Representational State Transfer (REST) and
Javascript Object Notation (JSON).

REST is a simple and intuitive way to map HTTP
request onto business logic, so that web clients can access
data in a familiar manner and without the use for any
application layer (for instance, accessing the HTTP URL
http://myserver.com/customer/1, would return the data
associated with Customer ID 1).

Javascript Object Notation is a way to represent
object-oriented data which any web client can also
interpret out of the box in a computationally efficient
way. Both REST and JSON have become part of the Java
Enterprise technology stack and have spread (JSON is
supported by 93.54% of World Wide Web users [3],
while any HTTP-capable client supports REST from the
ground up).

Requirement 4 is an implementation constraint that
implies that capturing industrial control data and
forwarding it to web clients must be done in a simple,
platform-independent way. It is not today addressed by
any standards, as even OPC-UA does not explicitly target
web clients. A custom solution is therefore required to
bridge this gap. Our prototype implementation provides a
simple agent process that subscribes on demand to native
data (OPC DA, DIP or any other control system specific
protocol using the corresponding native libraries) and
forwards the data through HTTP to the broadcasting web
server. It is of course undesirable in most cases to collect
raw data from a control equipment, but rather
recommended to collect it from a SCADA data source,
where data will have been refined, validated and pre-
processed for widescale distrbution.

Figure 1 below provides a global summary of the
broadcasting architecture, whereby multiple industrial
control data sources can be exposed to web clients in a
secure, efficient and scalable manner.

MOPPC145 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

450C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

DEVELOPING FOR MOBILE DEVICES
Gartner, the influential IT market analysis firm,

predicted in 2013 that mobile devices would overtake
desktop-based ones as a medium to access the World-
wide Web. And that by 2015, Internet tablet sales will
overtake those of laptop computers. Mobile devices such
as smartphones and tablets typically ship with powerful
low-power CPU chips (some of them with quad cores)
and even more capable graphic processing units (GPUs).

While each device brand will favour one dedicated
mobile operating system (Apple's iOS, Google's Android
or Microsoft's Windows 8 Mobile, to name but a few
major players on a very fast-growing market), they all
tend to support platform-independent web standards such
as HTML5, Websockets and CSS3, which in turn provide
potential for highly-interactive, visually appealing
applications. Such Web standards-based applications can
even store data locally, work offline and access advanced
native device features such as GPS-based localization,
access to personal data such as telephone contact lists or
calendaring functions, access persistent local storage and
file systems etc...

Despite advanced computational capabilities, certain
resources remain scarce on such platforms : network and
on-board memory usage are for instance severely limited.
When it comes to network usage, developing a user-
friendly mobile application implies working with small
and swiftly delivered chunks of information. Even
application logic and assets must fit within acceptable
ranges for the applications to load within an acceptable
amount of time (past 10 seconds of inactivity, an
application is typically stopped by its user, on suspicion
of it having stopped functioning).

And since mobile devices ship with limited memory
and on-board persistent storage, developers cannot rely on
a long initial loading-time that would download in one go
all of the application's resources locally for later usage -
past a certain size, these resources will not fit in memory
or local storage and will be evicted from the device's web
cache.

Distributing industrial controls data to mobile devices
must therefore be done in manageable chunks, and strictly
on-demand. Interactions with the web server must be
numerous and fast, yet reduced to the utmost minimum.

While a 200 kilobytes-long web application may seem
negligible in size to a traditional desktop-based web
developer, a mobile web user accessing it over an EDGE
data connection will experience severe delays before the
application starts up.

Various mobile user interface development frameworks
are available today to target mobile devices, such as
mGWT (Mobile Google Web toolkit), Sencha Touch and
JQuery Mobile. In the course of our development, we
have eventually eliminated any framework that was not
primarily written for mobile and low-end computing
platforms.
· Both mGWT and Sencha Touch for instance are

respectively desktop and internet tablet oriented UI
frameworks, relying on the developer to ensure that
their final application will be of a reasonable
compiled size and make acceptable usage of network
resources.

· JQuery mobile on the other hand focuses on lean
mobile-phone capable applications, delegating all the
rendering to the embedded GPU and the native
HTML engine. Of course, should more ample
resources be available, in the case of a desktop
computer for instance, JQuery mobile transparently
expands to make the most of a large screen, a
sizeable browser cache or powerful graphical
capabilities.

Finally, another widely-employed strategy to
circumvent mobile device storage and network bandwidth
limitations is the preparation and distribution of an “app”
(a term familiar to iPhone and Android smartphone
users). Presented to the end-user as a native application, it
is simple, thanks to frameworks such as Apache Cordova
or Adobe Phonegap, to pre-package web resources and
install them locally, thereby granting them enhanced
security privileges, local storage access rights and much
faster application startup times.

Figure 1: Broadcast framework architecture.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC145

Software Technology Evolution

ISBN 978-3-95450-139-7

451 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

DISTRIBUTING LHC DATA
Distributing data in provenance of the LHC to a wide-

audience has been the goal of many. LHC status
information is already widely available, from official
sources such as the LHC PAGE 1 and other so-called
VISTAR displays presented on television screens
scattered across the various CERN sites, onto hobbyist
attempts such as LHC PORTAL, an individual's initiative
to regroup all CERN-sourced visual displays into a single
location.

Two Case Studies at CERN
In 2009, the CERN EN department introduced a new

way of visualizing LHC data in a graphical format called
the "LHC Dashboard". Inspired by business intelligence
and dashboard concepts that allow to synthesize a large
amount of information into line charts, coloured maps or
even animations. The LHC Dashboard regenerates every
15 seconds all of its data visualizations in the form of
graphical files (such as PNG or JPG images). Web clients
then download these images at regular intervals, to see a
slowly updated evolution of the LHC status.

In parallel, on March 2010 for the official relaunch of
the LHC, a web application called "LHC Status Display",
implemented through a partnership between the CERN
Press Office, a third-party Swiss consulting company
(TechCare) and the EN department, presented an
animated, live data coming from LHC operation. This
data was collected via the DIP middleware protocol,
transformed to XML then forwarded in 50 kilobytes
chunks (roughly 20 seconds of highly summarized
operational data) to an array of CERN Web Servers. An
"Adobe Flash" application would then replay the data in
graphical form, through animations of the LHC Tunnel
and simulated fixed target displays, giving web visitors an
animated feed (albeit 20-second delayed with regards to
the live operational data) onto the LHC's current status,
with respect to beam energy, luminosity, number of
collisions observed by various LHC experiments etc...

This application met serious difficulties on the day of
the launch : The array of web servers deployed by the
CERN IT department, four production machines, proved
unable to serve enough requests to cope with the demand.
A mere 20 000 requests per minute were enough to render
half the array inefficient due to the constant polling
requests coming from web visitors.

Such experiences proved that polling-based HTTP data
serving is inadequate for large numbers of visitors and
that data formats must be tailored to the client platform,
so as to maximize data bandwidth usage.

The two previously mentioned project could have
greatly benefited from the mass-access enabling
technologies identified earlier.

Efficient Data Distribution for the “World Wide
Web”

Initiated in the spring 2012, a new version of the LHC
Dashboard aims at identifying the best modern approach

that would allow CERN to distribute copious amounts of
control data to a large audience. More generally, data
access should be possible from the simplest web-enabled
mobile devices, yet take advantage to the fullest of their
advanced capabilities for graphical data rendering.

This approach relies on an all-purpose Websocket-
enabled data distribution platform called "Broadcast". On
one hand, data collection agents are placed in specific
locations on the CERN Technical Network. They forward
the information to "broadcast topics", to which web
clients can subscribe to receive raw JSON data using the
most appropriate connection protocol at their disposal
(websockets, server-sent events, HTTP 1.1 long polling or
legacy HTTP polling).

Figure 2 shows screen captures of a lightweight JQuery
mobile interface allowing live access to control systems
data and interactive chart.

To gracefully scale to a large number of visitors, the
"Broadcast" web servers can be backed by a cloud
database such as REDIS [5], which provides fail-over,
automated scaling and clustering, data caching and
disaster recovery. Frameworks like Atmosphere can
readily leverage REDIS as a robust stateful session
storage solely through configuration : Should any of the
web servers fail, they can immediately be replaced by
another instance, as any session-dependent data is safely
kept in REDIS instead of the memory of the web server.

Data collection agents have to this day been written for
OPC DA and DIP protocols as proofs of concept. The
simplicity of the REST protocol and JSON data-encoding
makes it trivial to provide more data collection agents.

REFERENCES
[1] R. O'Harrow Jr, “Cyber search engine Shodan exposes

industrial control systems to new risks”, The Washington
Post, 06 June 2012;
http://articles.washingtonpost.com/2012-06-
03/news/35459595_1_computer-systems-desktop-
computers-search-engine

[2] I. Hickson, “The WebSocket API”, W3C Consortium, 20
September 2012, http://www.w3.org/TR/2012/CR-
websockets-20120920/

[3] A. Deveria, “Can I Use... Websockets ?” , Consulted 25
July 2013 ; http://caniuse.com/websockets

[4] D. Coward et al, “Java API for WebSockets”, Java
Specification Request (JSR-356), 22 May 2013,
http://jcp.org/en/jsr/detail?id=356

[5] S. Sanfilippo, P. Noordhuis “Redis performance
benchmark”, consulted on 20 August 2013 ;
http://redis.io/topics/benchmarks

Figure 2: JQuery mobile prototype UI.

MOPPC145 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

452C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

