
CONTINUOUS INTEGRATION FOR AUTOMATED CODE GENERATION

TOOLS

I. Prieto Barreiro, W. Booth, B. Copy. CERN, Geneva, Switzerland

Abstract

The UNICOS (UNified Industrial COntrol System) [1]

framework was created back in 1998 as a solution to build

industry like control systems. The Continuous Process

Control package (CPC) [2] is a UNICOS component that

provides a methodology and a set of tools to design and

implement industrial control applications. UAB (UNICOS

Application Builder) [3] is the software factory used to de-

velop UNICOS-CPC applications. The constant evolution

of the CPC component brought the necessity of creating a

new tool to validate the generated applications and to ver-

ify that the modifications introduced in the software tools

do not create any undesirable effect on the existing control

applications. The uab-maven-plugin is a plug-in for the

Apache Maven build manager that can be used to trigger

the generation of CPC applications and verify the consis-

tency of the generated code. This plug-in can be integrated

in continuous integration tools - like Hudson or Jenkins - to

create jobs for constant monitoring of changes in the UAB

framework that will trigger a new generation of all the ap-

plications located in the source code management.

INTRODUCTION

UNICOS (UNified Industrial COntrol System) is a

CERN (European Organization for Nuclear Research)

framework designed to develop industrial control system

applications. It provides a methodology, several object li-

braries and a set of tools to generate the control code for

these applications. The framework provides several com-

ponents used in different projects, such as CPC (Continu-

ous Process Control), CIET (Cryogenics Instrumentation

Expert Tool), QPS (Quench Protection System) and SUR-

VEY (Control system for aligning the LHC magnets) [4].

These components target very different development plat-

forms like Industrial PLCs (Programmable Logic Con-

trollers), FESA (Front-End Software Architecture) front-

end computers or SCADA (Supervisory Control And Data

Acquisition) packages.

UAB (UNICOS Application Builder) is a modular soft-

ware tool developed using Java and Jython programming

languages and designed to generate either the control code

or the configuration files for the different UNICOS applica-

tions. Like the UNICOS framework itself, UAB is made up

of several components (CPC, CIET, SURVEY, ...) to allow

the generation of the different types of applications. Each

UAB component consists of one or more software mod-

ules (Figure 1). The UAB software modules are classified

in three main categories: core, generation plug-ins and re-

sources packages [2].

Figure 1: UAB architecture overview.

This software modularity brings several benefits with re-

spect to the continuous improvement of the software:

• The modules can be reused by other modules improv-

ing the software quality by avoiding code duplication

and reducing the maintenance effort.

• Each module can be implemented by different teams

with different knowledge domains (e.g. Software En-

gineers, Control Engineers, etc.).

• Each module can have an independent life-cycle.

AUTOMATED GENERATION TOOLS

UAB provides a set of wizards with a user-friendly inter-

face that are helpful during the creation, configuration and

development of the control applications (Figure 2).

Figure 2: Wizard panel to generate code for Step 7.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC138

Software Technology Evolution

ISBN 978-3-95450-139-7

431 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 3: UAB application development workflow.

To develop UNICOS applications using UAB, it is nec-

essary to select the appropriate wizard depending on the

application package (CIET, CPC, SURVEY, ...), the target

platform for the application (e.g. Siemens or Schneider in

the case of PLC-based systems), define the necessary in-

put files (e.g. device specification list) and introduce the

required parameters to configure the system (e.g. the appli-

cation name and version, communication parameters, etc.).

Once the application configuration is completed, it is possi-

ble to trigger the execution of the various plug-ins to gener-

ate the code to be imported in the target platform software

(Simatic Step 7, Unity, WinCC OA, ...) (Figure 3).

This development workflow, based on GUIs, is suitable

to create new applications from scratch but it is tedious

when the developer is generating large or multiple appli-

cations. In these cases the generation procedure is a repeti-

tive, error-prone and time consuming task.

To tackle these cases UAB offers a different approach

to generate applications reducing the interaction with the

developer. The uab-maven-plugin is a plug-in for Apache

Maven that can be used to trigger the generation of UNI-

COS applications without further user intervention.

Apache Maven

”Apache Maven is a software project management and

comprehension tool. Based on the concept of a project ob-

ject model (POM), Maven can manage a project’s build,

reporting and documentation from a central piece of infor-

mation.” [5]

Automated Generation with Maven

To perform the generation of UNICOS applications us-

ing Maven, it is necessary to create a build XML (eXten-

sible Markup Language) file known as the project object

model (POM). This file contains all the necessary informa-

tion about the Maven project as well as the Maven plug-in

configurations to be used during the build process (or gen-

eration process in the current context).

The minimum contents required in the POM file to per-

form generations of UNICOS applications are:

• Maven coordinates: three elements (groupId, artifac-

tId, version) used to identify a specific version of the

Maven project.

• Dependencies definition: it defines the software de-

pendencies required to build the Maven project (or,

in the current context, to generate the UAB applica-

tions), i.e. the version of the uab-maven-plugin and

the UAB plug-ins that will be used to perform the gen-

eration.

• Executions of the uab-maven-plugin: the executions

are used to define the location of the UAB applications

to generate, the list of UAB plug-ins that will be exe-

cuted and to modify any of the application parameters

before the generation (like the plug-in output folders,

enable/disable the execution of the semantic rules or

the date format for the log files). It is possible to de-

fine several executions to group applications of differ-

ent nature, like Siemens CPC applications, Schneider

CPC applications, CIET applications, etc.

In the case of CPC applications it is possible to go one

step further and invoke the compilers of the target platforms

(Step 7 for Siemens or Unity for Schneider) after a success-

ful code generation. This compilation will verify whether

the generated code fits in the available memory and if it is

correct syntactically (e.g. the control structures are correct,

the parenthesis are balanced) and semantically (e.g. the

variables used in the PLC code are declared, the functions

invoked exist).

Additionally, it is also possible to include the configura-

tion of any other existing maven plug-ins to achieve fully

automated generations, for example:

• maven-scm-plugin: it is possible to define the appli-

cation location in the source code management to per-

form a checkout of all the source files of the applica-

tion before executing the code generation.

• maven-diff-plugin: used to find the differences be-

tween the generated files with a previous version. This

is useful to track the changes on the generated files af-

ter applying any modifications in any of the input files

of the application.

MOPPC138 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

432C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



Once the POM definition is completed it is possible to

start the generation of the defined applications using a sim-

ple maven command: mvn compile.

In addition to the UNICOS application development, the

uab-maven-plugin is very useful during the software devel-

opment phase of the different UAB modules. For example,

after a source code refactoring or after the development of

new features in any software module, it can be used to ver-

ify that the generated outputs are equivalent or the modi-

fications in the module did not introduce any undesirable

side effect.

The next step is to use continuous integration tools to

automatically trigger the generation of the applications so

the developers can focus on the application development

itself rather than the generation procedure.

CONTINUOUS INTEGRATION

”Continuous Integration is a software development prac-

tice where members of a team integrate their work fre-

quently, usually each person integrates at least daily - lead-

ing to multiple integrations per day. Each integration is

verified by an automated build (including test) to detect in-

tegration errors as quickly as possible. Many teams find

that this approach leads to significantly reduced integration

problems and allows a team to develop cohesive software

more rapidly.” [6]

With the help of continuous integration tools - like Hud-

son or Jenkins - it is possible to create jobs that con-

stantly monitor changes in the source code management

(e.g. Apache Subversion, Git) and trigger a generation of

the related applications to verify that the modifications do

not break the generation. The jobs can be configured to

send e-mails to the individuals who broke the build in the

case of a failure during the generation of the applications.

The tools used to structure the build automation are (Fig-

ure 4):

• Apache Subversion: used as sofware versioning and

revision control system.

• Apache Maven: software management tool used to

define standard builds and to produce structured build

results.

• Hudson: continuous integration tool used for build au-

tomation and software deployment.

• Sonatype Nexus: software repository manager used

for dependency resolution and as storage location for

the deployed software.

• Atlassian Confluence: team collaboration software

used to deploy the system’s online documentation and

to provide the links to download the deployed soft-

ware.

With the help of these tools, it is also possible to au-

tomate the software release procedure, thereby avoiding

repetitive tasks such as tagging the source code, generat-

ing the API documentation, packaging the necessary files

in a distributable format, uploading the packaged files to a

Figure 4: Build automation structure.

server or repository manager or updating the project’s on-

line documentation. Once the Maven project and the Hud-

son job are properly configured all those tasks can be com-

pleted in two simple steps: introduce the release parameters

and trigger the release procedure using the user-friendly in-

terface provided by Hudson (Figure 5).

Figure 5: Parametrized release definition in Hudson.

FUTURE DEVELOPMENT

The tools and procedures described allow a high level

of automation for the generation of control system appli-

cations - improving their overall quality - but there is still

room for improvement in several areas.

Generation Output Unit Testing

While our current UAB integration testing approach re-

lies on the comparison of output files to expected contents,

such approach does not allow the formulation of sophis-

ticated assertions, nor does it allow to easily pinpoint the

cause of a difference in test results, like one would expect

from a unit testing framework such as JUnit [7].

This stems from the fact that the UAB generation output

cannot currently be parsed, for instance PLC code cannot

yet be turned into an abstract syntax tree. Having such a

capabilities would allow to express fine-grained verifica-

tion assertions that would greatly enhance the precision of

our unit tests and locate the cause of a regression in the

UAB codebase.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC138

Software Technology Evolution

ISBN 978-3-95450-139-7

433 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Generated Code Comparison

Currently, the comparison of the generated outputs of

an application is made using text comparison tools like the

maven-diff-plugin. This approach is appropriate when the

format of the generated files is plain text but it becomes

unusable for other formats like XML. For example, when

an XML content is serialized, the order of the element’s

attributes is not significant and can not be enforced. As

a result, different generations can create equivalent XML

files but not identical from a text comparison point of view,

which makes the file comparison more complex (Figure 6).

Figure 6: XML comparison using diff tools.

Assist the UAB Developers

One of the challenges that the developers face during the

first development phases of a new UAB component is that,

at least, one UAB plug-in and a resources package must

exist from the beginning (the plug-in input files are defined

in the resources package and the code generation is driven

by the plug-in using the scripts provided by the resources

package). To facilitate this task, the functionality of the

uab-maven-plugin is being extended to:

• Generate the skeleton of the resources package, plug-

ins and wizards.

• Add new UNICOS objects to an existing resources

package.

• Add a new plug-in to an existing UAB component in-

tegrating it in the component’s wizard.

These new features will allow developers to focus on im-

plementing the desired functionality for the UAB compo-

nent by extending an existing structure and, therefore, re-

ducing the amount of time required to develop new UAB

components.

CONCLUSION

The use of continuous integration tools have been proven

to be a best practice in software engineering during the soft-

ware development and maintenance phases and assist with

higher software quality [6].

The UAB development team has made an effort to apply

the same practices to the development of control system ap-

plications, providing tools to perform automatic executions

of the code generators or plug-ins. In the scope of UNI-

COS applications development, these tools allow to reduce

the user interaction and avoid repetitive, error-prone and

time consuming tasks. In the case of UAB software devel-

opment, the tools provide a mechanism to verify the cor-

rectness of the modifications introduced in the software by

comparing the generated outputs with previous versions.

These tools are currently being used when developing

UNICOS-based control systems. The LHC GCS (Large

Hadron Collider, Gas Control System), LHC Cryogenics

and many HVAC (Heating, Ventilation and Air Condition-

ing) control applications are some examples of them. In

summary, there are more than 50 applications using these

tools which generate more than 14 million lines of PLC

code.

REFERENCES

[1] Ph. Gayet, R. Barillère. “UNICOS a framework to build in-

dustry like control systems: Principles & Methodology”.10th

ICALEPCS Int. Conf. on Accelerator and Large Expt. Physics

Control Systemns. Genève (Switzerland), 10-14 Oct 2005.

[2] B. Fernández Adiego, E. Blanco Viñuela, I. Prieto Barreiro,

“UNICOS CPC6: Automated code generation for process

control applications”, 13th ICALEPCS Int. Conf. on Accel-

erator and Large Expt. Physics Control Systems. Grenoble

(France), 10-14 Oct 2011.

[3] M. Dutour. “Software Factory Techniques applied to process

control at CERN”. 11th ICALEPCS Int. Conf. on Accelerator

and Large Expt. Physics Control Systems. Tennessee (USA),

15-19 Oct 2007.

[4] Hervé Milcent, Enrique Blanco, Frédric Bernard, Philippe

Gayet. “UNICOS: An open framework”. 12th ICALEPCS Int.

Conf. on Accelerator and Large Expt. Physics Control Sys-

tems. Grenoble (France), 12-16 Oct 2009.

[5] Apache Maven Project,

http://maven.apache.org/index.html

[6] Martin Fowler, “Continuous Integration” (2006),

http://martinfowler.com/articles/continuousInt

egration.html

[7] JUnit Framework, http://junit.org

MOPPC138 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

434C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution


