
!CHAOS: THE "CONTROL SERVER" FRAMEWORK FOR CONTROLS

L. Catani, INFN-Roma Tor Vergata, Roma, Italy
F. Antonucci, C. Bisegni, A. Capozzi, G. Di Pirro, L.G. Foggetta, F. Iesu,
N. Licheri, M. Mara, G. Mazzitelli, A. Stecchi, INFN-LNF, Frascati, Italy

Abstract
We report on the progress of !CHAOS [1], a framework

for the development of control and data acquisition ser-
vices for particle accelerators and large experimental ap-
paratuses. !CHAOS introduces to the world of controls a
new approach for designing and implementing communi-
cations and data distribution among control system’s com-
ponents and for providing the middle-layer services for a
control system. Based on software technologies developed
for high-performance Internet services !CHAOS offers, by
using a centralized highly-scalable cloud-like design, all
the services needed for controlling and managing a large in-
frastructure. It includes a number of peculiar features such
as high abstraction of services, devices and data, easy and
modular customization, extensive data caching for enhanc-
ing performances, integration of all services in a common
framework. Since the !CHAOS conceptual design was pre-
sented two years ago the INFN group have been working
on the implementations of services and components of the
software framework. Most of them have been completed
and tested for evaluating performance and reliability. Some
services are already installed and operational in experimen-
tal facilities at LNF.

abstraction
boundary

live-data
(DOC) MD Server

DAQ
(KVDB)

commands
alarms

Figure 1: The !CHAOS "control server" model.

INTRODUCTION
One of the pillars of the !CHAOS framework is the high

abstraction of services, devices and data such to obtain

a high scalability of the system and an extreme flexibil-
ity in terms of its possible applications (see Fig. 1). Al-
though particle accelerators and large experimental appa-
ratuses have been always considered as the primary target,
since the very beginning of the project we looked for other
uses of !CHAOS with special attention to Cyber Physical
Systems and, more in general, solutions for monitoring and
managing devices and sensors over Local or Wide Area
Networks that we already presented to some potential com-
munities of users.

Recently, the Italian Ministry of Education, University
and Research has approved a two-years project aimed at
the development of a prototype of cloud-like monitoring
services for multidisciplinary applications based on the
!CHAOS framework.

At the same time the !CHAOS Group is continuing the
development of framework’s components, including an up-
date of the design of the DAQ service, and the deployment
of !CHAOS-based solutions at control systems of LNF’s
accelerators.

PROGRESS OF !CHAOS FRAMEWORK
Front-end

The refinement of the Control Unit design has brought to
the definition of a CU as a "container" for a device’s front-
end controls. Beside the standard methods: INIT, START,
STOP and DEINIT, CU’s specialization is provided by the
device’s dataset, the actions implemented for it (e.g. com-
mands and control loop) and the drivers for I/O components
(see Fig. 2).

At startup (INIT) the CU receives from the Meta Data
Server (MDS) the dataset of the accelerator’s device
(equipment, diagnostic, sub-systems, etc.) assigned to that
unit and the related actions. The default action, i.e. RUN,
implements the accelerator’s device control loop; other ac-
tions implement, as usual, commands for modifying the
working state of the device or for executing more complex
procedures.

At START the CU begins looping on the active actions
with only the RUN action tagged as active. When a new
command is received, the CU appends it to the priority
queue that is managed according to the commands’ prop-
erties. If the action currently running is either killable or
stackable, as RUN is, a new command from the priority
queue can be moved to the actions loop and executed in-
stead of the previous one or in sequence with it.

Simple actions are managed by handlers associated to
dataset’s variables using C++ accessors to execute set or

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC126

Software Technology Evolution

ISBN 978-3-95450-139-7

403 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



get operations. If the variable is connected to an I/O chan-
nel then the correspondent driver is used to access the hard-
ware.

In !CHAOS, I/O modules drivers are managed by CU-
like components called Driver Unit. Similarly to CU they
are specialized for a particular I/O module, or more in gen-
eral a I/O service, by means of the module’s dataset in-
cluding specifications such us the IP address and port for
a network device or the Controller address and Node num-
ber for CAN units etc., and by specific management soft-
ware. dataset also includes unique identifiers for each I/O
channel of the module (e.g. each input channel of an ADC
module).

At startup the Driver Unit initialize the I/O module and
starts populating the embedded key/value shared memory
with default values of its I/O channels. The key is provided
by the unique identifier assigned to the I/O channel; it is de-
fined in the module’s dataset received by the Driver Unit.
After receiving the START signal, the Driver Unit begins
looping on the I/O module acquisition procedures triggered
either by machine timing signals or by or software.

It means the Control Unit and the Driver Unit will run,
asynchronously and independently, their own tasks gov-
erned by their respective timing: the device’s refresh rate
and command execution the first, the machine’s timing the
second. If synchronization is needed, as is for the case of
readout from a serial line I/O, dedicated variables shared
among CUs and DUs can be used, similarly to a bus con-
trol line, for triggering an acquisition (by the CU) and for
asserting the data ready signal (by the DU).

The solution that was just described allows to clearly,
and conveniently, separate the development of the software
implementing the logic of the controls (control loop, com-

C
U

 T
oo

lk
it

front-end controller

distributed
KVDB

distributed
object

caching

meta-data
server

Commands
Alerts

framework user’s defined

C
on

tro
l U

ni
t 1

C
m

d

Handlers

Handlers

Handlers

Ac
tio

ns
 fo

r D
ev

ic
e 

#1

start/stop/init...

Run

C
on

tro
l U

ni
t N

Handlers

Handlers

Handlers

Ac
tio

ns
 fo

r D
ev

ic
e 

#N

start/stop/init...

D
riv

er
 U

ni
t 1

Run

C
m

d
C

m
d

C
m

d

Ac
tio

ns
 fo

r
D

ev
ic

e 
#1

I/O
dr

iv
er

s

start/stop/init...

C
om

m
on

 T
oo

lk
it

Figure 2: !CHAOS front-end and its components.

C
U

 T
oo

lk
it

C
on

tro
l U

ni
t 1

Handlers

Handlers

Handlers

Ac
tio

ns
 fo

r D
ev

ic
e 

#N

start/stop/init...

D
riv

er
 U

ni
t 1

Run

C
m

d
C

m
d

Ac
tio

ns
 fo

r
D

ev
ic

e 
#1

I/O
dr

iv
er

s

start/stop/init...

em
be

dd
ed

 k
ey

/v
al

ue
 s

ha
re

d 
m

em
.

Figure 3: Role of the key/value shared memory to pass data
between Driver Units and Control Units.

mands etc.) from the I/O modules software. In other words,
it extends the !CHAOS abstraction concept down to the in-
terface between the device’s logic and the I/O driver’s man-
agement.

In fact, the unique identifier, defined for each I/O chan-
nel of any I/O module, is the only link between the user
of the I/O data, e.g. a CU action by means of a get han-
dler, and the producer of the I/O data, the Driver Unit man-
aging the I/O module to which this particular I/O channel
belongs. When a new accelerator’s device is added to the
control system, the programmer searches the database for
the I/O modules used by this device and links the I/O vari-
ables of the dataset with the unique identifier associated to
the channel it uses.

At the time of writing of this paper, this solution is yet
to be fully implemented mainly because it strongly relays
on services of the MDS that have not been completed. To
achieve a fully functional CU for the pilot installations
on Dafne Control System, the Driver Unit functionalities
have been split into methods of the CU and, instead of the
key/value shared memory, pointers to memory locations of
I/O variables are passed between the handlers and the I/O
drivers.

DAQ
Compared to both the strategies and the technologies im-

plemented in the first prototypes, the DAQ has been subject
to a deep redesign with the aim of creating a solution for
the infrastructure and the history service that is able to of-
fer the maximum scalability in terms of speed, throughput,
capacity and, especially, the depth of database.

It doesn’t mean that the solution based on distributed
KVDB was dropped. Instead, exploiting the abstraction of
services that is guaranteed at all levels in !CHAOS, the for-
mer is now one of the possible options within the set of data
storage technologies that are supported by a more flexible
and performant design.

MOPPC126 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

404C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



Proxy - CQL

Indexer #1

Indexes DB

FS Svr #1

FS Svr #2

FS Svr #32

2

1

1

3

3

4

4

5

6

6

5

Proxy - CQL

Cache
layer

Storage
Manager

Proxy - CQL

Proxy - CQL

Proxy - CQL

Figure 4: !CHAOS History Engine and its components.

In !CHAOS the DAQ, i.e. the machine data acquisition
system, is provided by the service we call History (HST)
Engine. A distributed network File System (FS) is used to
store data produced by machine operations while a KVDB
manages the set of indexes that are produced by the index-
ing rules; candidates are Hadoop [2] and MongoDB [3] re-
spectively. The functionalities of !CHAOS HST Engine are
provided by three dedicated components namely, the CQL
Proxy (where CQL stands for CHAOS Query Language),
the Indexer and the Storage Manager.

Figure 4 shows the data flow and the role of the be-
fore before mentioned components in data writing (red) and
reading/querying operations (green). Grey lines are used to
indicate HST commands and internal data flow.

A CU starts the writing process by sending a dataset to
the CQL Proxy indicated, by the MDS, as its primary HST
server (1). Upon receipt of the package, the proxy inter-
prets the CQL command and starts the process of writing
the data into the file system.

To ensure multi-write capabilities we implemented a
Cache layer such that all the packets received from clients
are stored by proxies in a common area structured as the
following.

For each CQL Proxy a logical path is created in the dis-
tributed FS (see Fig. 5). At the same time, each proxy
launches a pool of threads having the only task of allocat-
ing (2) the packets received by the proxy into files within
the logical path associated to the Proxy, regardless from the
device that sent the packet. Once a predefined maximum
size, in terms of either disk space or time period is reached,
the file is marked as “closed" and another one is opened for
writing.

In parallel the Storage Manager looks for closed files (3)
and empties them by distributing the packets to the FS file
they belong since for each device there is a dedicated log-
ical file (4). A logical file is made of physical files, or
"chunks", ordered in such a way to be seen by clients as
a single file of chronologically ordered chunks.

Ordering is done by another process called âĂIJ-
FuserâĂİ. Since each chunk is a chronologically ordered
sequence of datasets, the Fuser checks if there is an over-

Indexer #1

Fuser

Indexes
DB

distributed
File

System

21
3 4 5 6

Proxy - CQL Storage Manager

Proxy CQL
logical file

devices’
logical files

chunk (physical file)

Figure 5: The !CHAOS History Engine storaging and in-
dexing sequence.

lapping between the oldest and the newest timestamp in
two adjacent chunks and, in that case, reorders them before
they are definitely stored in the file system. Hadoop auto-
matically replicates the files in the other servers of the FS
(grey lines).

Next the CQL Proxy informs the pool of Indexer nodes
about the new entry and the first available Indexer appends
the task to its queue. When processing the entry, the In-
dexer first reads the packet (i.e. the dataset) from the first
available Hadoop node (5), analyzes it and, according to
the indexing rules, updates the corresponding indexes on
the Indexes DB (6). The default indexing strategy will be
by chronological order, i.e. based on the timestamp and
bunch/packet number within timestamp intervals.

Queries to HST are triggered from client applications by
sending a CQL command (1) to the proxy with the high-
est priority in its list. The proxy node decodes the request
and passes it to the first available Indexer (2) that in turn,
by querying the Indexes DB, receives the positions of data
packets (3) satisfying the query’s conditions (e.g. all data
packets within a certain time interval) and sends them to
the CQL Proxy (4). The packages are then collected (5)
from various FS Servers and sent (6) to the client.

It’s worth mentioning that since responses to queries are
asynchronous and tasks can be distributed among different
nodes, data packets resulting from a query can be provided
to the client application also by CQL Proxies different from
the one that originally received the request.

Other Developments
The detailed implementation of the !CHAOS framework

revealed possible improvements to the basic design and op-
timizations that we already started to investigate. These
tasks offered opportunities of research arguments for grad-
uate or doctoral thesis that have been undertaken in the last
months.

The first work investigated the possibility of introducing
a second level caching at the client layer to minimize the
data fetching from the main key/value database. We stud-
ied the possibility to introduce a circular buffer for sharing
data among client applications. As an example, consider
a GUI with a graph showing the last N values of a cer-
tain variable. When the GUI starts to fetch data from the
KVDB, the User Interface Toolkit underneath allocates a
lock-free circular buffer and provides the graph’s applica-

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC126

Software Technology Evolution

ISBN 978-3-95450-139-7

405 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



dataset dataset dataset dataset dataset

garbage
collector

tracker

get()

Figure 6: The UI Library circular buffer for caching the
data fetched from the key/value database.

tions with the pointer to the buffer (see Fig. 6). The buffer,
with size equal to the depth of the graph, is updated by the
tracker taking into account the refresh rate of the device
and the sampling of the graph.

If another GUI panel or application needs the same data
or a part of it, e.g. the most recent value of the buffer or a
downsampling, the User Interface Toolkit instead of open-
ing another stream of data uses the buffered data to feed
the second client. Alternatively, if the second client needs
a longer buffer or higher sampling frequency the buffer is
resized accordingly and the original "owner" of the data
buffer will extract data from it.

A second thesis addressed the optimization of datasets’
distribution, i.e. of the Control Units’ data pushing pro-
cesses, to the pool of Proxy CQL for refreshing the main
cache memory. dataset assignment (i.e. distribution of
keys) to memcached servers is managed by the MDS that
provides Control Units and User Interface Toolkit with the
list of primary and secondary servers for each dataset. In
the case of failure of a primary server both writing (typi-
cally CUs) and reading clients automatically switch to the
first secondary server in the list and then to the following
one in case the latter also fails.

An algorithm has been developed to create the list of pri-
mary and secondary servers for each CU that equally dis-
tribute the load among the Proxies. To achieve the optimal
balancing, the algorithm distributes datasets by taking into
account the product (dataset size) × (nominal refresh rate)
such that bytes per seconds written to each server will be
uniformly distributed. Also secondary keys will be chosen
to preserve a reasonable balancing in case of failure of one
or more servers in the cluster.

The results of the algorithm and the failover scheme
have been tested in a multi-CU and multi-Proxy system.
The result confirmed the possibility to manage Proxies fail-
ure with limited impact on performance and data loss be-
cause switching to secondary server never exceeded 2 ms.
In other words the failover scheme can guarantee data in-
tegrity for refresh rates up to 50 Hz.

Another work aimed at developing a tool for benchmark-
ing and fine-tuning the communication framework based
on the central caching of datasets by using the key/value
database.

By using the theory of controls we simulated on a CU an
unstable physical process. A feedback algorithm, running
on a client application at the consoles level, is used to stabi-
lize a given working point. The simulated physical process
was designed in such a way to be sensitive to relevant indi-
cators of performance of the communication framework. In
other words if the communication framework is not able to
support the feedback algorithm with sufficient transmission
speed and throughput the process will lose its stability.

A number of CUs running this physical process can be
activated and controlled by an equivalent number of client
applications. By increasing the number of such processes
and/or modifying their stability conditions it is possible
to get the measure of performance of the communication
framework.

Finally, another task has dealt with the development of
an embedded version of memcached [4] for implementing
local shared memories. The work consisted in isolating the
code for the key/value storage by removing either depen-
dencies from libraries such as libmemcached and libevent
or resource consuming services and features in order to op-
timize its performance. A typical use would be, for in-
stance, the management of shared memory for exchanging
data between Driver Units and Control Units, as it was pre-
viously described.

CONCLUSION
The !CHAOS Group is progressing in completing the

services of the !CHAOS Framework and, consequently, in
the definition of details of its design.

The innovative approach at the basis of the !CHAOS
framework requires a number of well established control
system’s components to be deeply redesigned. Neverthe-
less, prototypes of the main services are already under test
and demonstrated the validity of design in terms of per-
formances and robustness. Future plans foresee a smooth
migration of the LNF accelerators’ controls to !CHAOS-
based solutions.

In parallel the !CHAOS Group is involved in the devel-
opment of a multidisciplinary application of the !CHAOS
framework aimed at prototyping a cloud-like monitoring
service for devices and sensors distributed over a Wide
Area Network.

REFERENCES
[1] 10.1103/PhysRevSTAB.15.112804.

[2] http://hadoop.apache.org.

[3] http://www.mongodb.org.

[4] http://memcached.org.

MOPPC126 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

406C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution


