
Alessandro Rubini (University of Pavia, Italy)

Juan David González Cobas, Tomasz Włostowski (CERN)

Federico Vaga (GNUDD)

Simone Nellaga (University of Pavia, Italy)

Abstract

ZIO (standing for “The Ultimate I/O” Framework) was

developed for CERN with the specific needs of physics

labs in mind, which are poorly addressed in the mainstream

Linux kernel.

ZIO provides a framework for industrial, high-

bandwidth, high-channel count I/O device drivers (digitiz-

ers, function generators, timing devices like TDCs) with

performance, generality and scalability as design goals.

Among its features, it offers abstractions for

• both input and output channels, and channel sets

• run-time selection of trigger types

• run-time selection of buffer types

• sysfs-based configuration

• char devices for data and metadata

• a socket interface (PF ZIO) as alternative to char de-

vices

In this paper, we discuss the design and implementation

of ZIO, and describe representative cases of driver devel-

opment for typical and exotic applications: drivers for the

FMC (FPGA Mezzanine Card, see [1]) boards developed at

CERN like the FMC ADC 100Msps digitizer, FMC TDC

timestamp counter, and FMC DEL fine delay.

MOTIVATION AND REQUIREMENTS

The initial motivation behind the development of ZIO

arose in 2011, after a careful analysis of Comedi and IIO,

the I/O frameworks existing at that time in the staging area

of the Linux kernel source tree. It was clear that both al-

ternatives were not suitable, generic nor complete enough

for the needs of data acquisition systems like the ones at

CERN or other physics laboratory facilities, where high

performance and diversity of available hardware impose

stringent conditions. For example, block transfers, output,

fine timestamping or mmap/DMA were absent in IIO and

definitely required.

As announced in [2], the design and development of a

Linux kernel framework for I/O better suited to the needs of

physics laboratories was initiated, with these aims in mind:

• digital and analog input and output;

• one-shot and streaming (buffered) data acquisition or

waveform play;

• high resolution (under 1ns) timestamping of data

blocks;

• generic coverage of resolution, sampling rate, data

sizes, calibration, offset and gain parameters;

• pluggable buffer and trigger types;

• low overhead;

• support for DMA;

• bit grouping in digital I/O;

• clean design conforming to Linux kernel practice,

with the intention to integrate in the mainstream ker-

nel.

Development and Release Timeline

Alessandro Rubini and Federico Vaga started ZIO de-

velopment in October 2011, as part of their collabora-

tion with CERN BE/CO/HT section [3], within the Open

Hardware initiative. Its ongoing development can be fol-

lowed in the project page at the Open Hardware Repository,

http://www.ohwr.org/projects/zio.

By May 2012, ZIO was mature enough to make its real-

world debut in the experimental setting of the LNGS neu-

trino speed measurements [4]. At around the same time,

development of the PF ZIO network type was started by

Simone Nellaga [5].

The first official release of ZIO v1.0 appeared in January

2013. Contributions have continued ever since by the three

core developers, adding features, test benches, fixing bugs

and the ongoing development of PF ZIO.

HOW ZIO WORKS

As a Linux kernel I/O framework, ZIO has to provide the

following basic abstractions:

• a view of I/O devices and their features,

• a mechanism to pipe data from user space applications

to the raw hardware and vice versa,

• a model of the data it handles, with associated meta-

data,

• an appropriate interface to user space to access it all

in a uniform way

The following sections explain how ZIO addresses the

above abstractions in its own peculiar ways.

HOW ZIO SEES I/O DEVICES

Devices, Buffers and Triggers

I/O peripheral devices transfer data (dealt with by ZIO

in so-called data blocks, to be described later) through

channels. Input or output actions can happen in response

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOMIB09

Software Technology Evolution

ISBN 978-3-95450-139-7

77 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



to events related to external signals, timing, or even self-

timing of the device; in addition, some kind of buffer has

to be in place to host the transferred data. According to this

view, ZIO deals with abstractions for

devices which correspond to a specific I/O peripheral

triggers software objects which provoke I/O events when

a condition they are prepared (or armed) to respond to

occurs

buffers which take care of holding data passed back and

forth

Figure 1: The ZIO framework hierarchy.

The standard ZIO distribution provides ready-to-use ex-

amples of these three concepts. In particular, generic

RAM-based buffer types are provided based on kmalloc

and vmalloc. Basic trigger types that come with stock

ZIO are:

transparent trigger activated by software read/write re-

quest or by self-timing devices

kernel timer activated periodically

high resolution timer periodic or one-shot

external activated by external interrupt

Additionally, add-on drivers can register their own trigger

type, so for example an ADC card can provide data-driven

triggers for a scope-like application. An example is the

FMC ADC driver developed by Federico Vaga which we

will reference later.

Channel Sets

The core concept of the device model of ZIO is the chan-

nel set (cset for short): a set of channels of identical charac-

teristics that is associated with a trigger instance. Such an

instance is a software object prepared to react to a particu-

lar type of trigger event and provoke the actual I/O action.

Trigger instances are, as one could expect, instantiations of

trigger types. The consequence is that all channels in a cset

are always affected as a whole by a particular I/O event.

A device can contain various csets, which gives rise to the

hierarchical structure of Fig. 1.

In addition, each channel in a cset gets a buffer instance

of a buffer type associated with the cset.

To summarize, csets contain channels whose I/O events

are driven by a trigger instance of a particular type, i.e., re-

acting to a particular class of trigger events; the cset chan-

nels are homogeneous and have buffers, all belonging to the

cset buffer type. The relationships are displayed in Fig. 2.

Figure 2: A ZIO channel set (cset).

HOW ZIO SEES DATA FLOW: THE DATA

PIPELINE

In ZIO, each I/O event is the transfer of a data block,

which consists of zero or more samples. The path a data

block traverses between the I/O peripheral and the user

space application is depicted in Fig. 3.

The lifetime of a data block during a transfer is easy to

understand from the picture. In a read call, the buffer re-

ceives a retr_block request that it honours if an input

block is already buffered. Otherwise, the buffer requests

the trigger with a pull_block to notify the trigger that a

transfer should proceed; most often, this method is absent

and the trigger acts by itself. The actual I/O is initiated

when the trigger calls raw_io, its completion being noti-

fied to the trigger by a data_done callback.

Output occurs in a dual manner, the roles of all methods

being identical or parallel to the input case.

For the many particular corner cases that may arise we

refer to the user manual [6].

It is interesting to note the following

• the input and output pipelines are symmetric.

• ZIO components have a simple core interface. Buffers

provide methods for the allocation, storage, retrieval

and freeing of the active data block. Triggers, on

their side, communicate with the peripheral driver

with raw_io and data_done methods; in addition,

explicit read/write requests are communicated to trig-

gers via pull_block and push_block methods.

MOMIB09 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

78C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



����� �����	
��� ����	
��� ���	��

����	��������	
���

���� ����	
��� ����	
��� ���	��

����	���������	
���

�����	
���

����	
���

�����	
���

����	
���

����������������������	�
������������������������������������������������������������������������������������	

Figure 3: The ZIO data pipeline.

• the overall flow is very simple: in normal conditions,

all that is involved is store_block and retr_block

for the buffers, and raw_io and data_done for the

triggers. In addition push_block and pull_block

can explicitly initiate transfers, or restart them when

they stopped because of data starvation.

HOW ZIO SEES DATA: THE DATA

MODEL

The most original and fertile idea in ZIO is its data

model, based on a structure named block. A block consists

of two parts

• metadata associated with the I/O event that produced

the data, in the form of a fixed-size structure called a

control in ZIO jargon.

• the actual data, a possibly huge number of samples, in

the form of a payload completely transparent to ZIO.

It is interesting to take a look at the layout of the control

data structure, as depicted in Fig. 4.

The structure is defined to be always 512 bytes long.

The two most important sub-structures in the control are

a high-resolution time stamp (green in the figure), which

can be either software- or hardware-generated, and a com-

plete, world-unique, identification of the channel this block

belongs to (gray in the figure). Such data structure is used

as socket address in PF ZIO, so applications can determin-

istically sendto() and recvfrom() in the ZIO network.

The leading fields identify the version of the structure,

the sequence number and size of this block, as well as alarm

bits to persistently report errors in the stream for this chan-

nel (alarm conditions are reset by bitwise sysfs writes).

The bulk of the control structure then lists attributes for

both the current channel and the current trigger. In this way,

a ZIO block carries the complete metadata information to-

gether with the data, offering a flexible transport interface

where only the endpoints of the ZIO pipeline are concerned

with the inner details of the specific device or trigger.

V v A a sequence nsamples ssize nbits
fam type host-identification device-id
cset chan device name

tstamp: secs tstamp: ticks
tstamp: bins mem-addr reserved

flags trigger name

TLV record for optional extra information

This area hosts attributes for the device
and for the currently active trigger.

Device and trigger are each characterized by
16 "standard" attrs and 32 "extended" attrs.

A bit-mask states which attrs are active.

Each attribute is a 32-bit word

0x00
0x10
0x20
0x30
0x40
0x50
0x60

0x1F0

Figure 4: The ZIO control structure.

HOW ZIO IS SEEN FROM USER SPACE

ZIO interfaces with user space by means of character de-

vices, two per channel: one for control and one for data.

The most common data flow is depicted in Fig. 5. In any

case, the user can choose not to read or write either the

control or the data; the semantics allows an application, for

example, to ignore the metadata if it knows it is acquiring a

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOMIB09

Software Technology Evolution

ISBN 978-3-95450-139-7

79 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



stream of similar data blocks. More complex and demand-

ing data flows are possible, allowing access to mmapped

data using the vmalloc buffer type.

ch-0-ctrl

ch-0-data

ch-1-ctrl

ch-1-data

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

data flow direction

Figure 5: The ZIO control and data streams.

ZIO also offers a rich sysfs interface, with sets of stan-

dard and extended attributes assigned to devices, triggers

and csets. This results from the basic ZIO design principle

of “no ioctl(), thanks” for out-of-band device configura-

tion. Apart from the intrinsic interest as an interface, sysfs

attributes prove invaluable in testing and debugging. The

attributes are automatically mapped to the control structure,

so the sysfs and the char device views are consistent.

Last, but not least, PF ZIO is another development in

beta stage that allows to perform I/O through a standard

socket interface. Using a single PF ZIO socket, an applica-

tion can exchange data blocks with several channels; this is

especially useful when collecting events from sensor net-

works with sporadic data but high cardinality—like neu-

trino detectors. PF ZIO supports all three types of socket:

stream, datagram and raw.

ZIO IN PRACTICE: FMC ZIO DEVICE

DRIVERS

The BE-CO-HT section at CERN has developed a kit

of modules described in [7, 8], compliant with the ANSI

VITA 57 FMC (FPGA Mezzanine Card) standard [1].

Linux device drivers for the following modules have been

developed using the ZIO framework.

• FMC Delay 1ns 4cha (http://www.ohwr.org/

projects/fmc-delay-1ns-8cha)

• FMC ADC 100M 14b 4cha (http://www.ohwr.

org/projects/fmc-adc-100m14b4cha)

• FMC TDC 1ns 5ch (http://www.ohwr.org/

projects/fmc-tdc)

Although both the ADC and the TDC are good examples

of devices ZIO was conceived for, it is by an accident of

history that the FMC Fine Delay was the first CERN device

whose low-level software was entirely ZIO-based.

The first stable release of the ZIO-based FMC ADC

driver appeared in July 2013. Interestingly, this module’s

particular features (e.g. multi-shot acquisition) required the

development of a specific trigger type. Again, the flexibil-

ity built into the framework made it adapt smoothly to new

requirements.

The FMC TDC drivers are in the final stage of develop-

ment and will be probably released by the time this paper

is published. In this particular case, none of the two devel-

opers were members of the original ZIO core development

team. They used ZIO to great profit without much difficulty

in learning its internals.

CONCLUSIONS

The experience of the FMC drivers development shows

that a diversity of devices is handled well within the ZIO

framework, even when new features require special types

of trigger or buffer.

It might appear that the various abstractions built into

ZIO make its learning curve steep; however, as the FMC

TDC example shows, developers can quickly get up to

speed with it and produce drivers for complex hardware.

This is made possible by reference implementations (the

FMC Fine Delay driver) and instructive example drivers

supplied by the ZIO standard distribution. Moreover, a

common interface and set of tools for monitoring and de-

bugging the developed drivers reward the initial learning

effort.

REFERENCES

[1] VME International Trade Association, “FPGA Mezzanine

Card (FMC) Standard”, http://www.vita.com/

[2] J.D. Gonzalez Cobas, S. Iglesias Gonsalvez, J.H. Lewis,

J. Serrano, M. Vanga, E.G. Cota, A. Rubini and F. Vaga,

“Free and Open Source Software at CERN: Integration of

Drivers in the Linux Kernel”, ICALEPCS’2011, Greno-

ble, October 2011, THCHMUST04, pp.1248-1251 (2011),

http://www.JACoW.org.

[3] F. Vaga, “Development of an I/O framework within the Linux

kernel for high-bandwidth data transfers”, Tesi di Laurea, Fa-

coltà Di Ingegneria, Università degli Studi di Pavia, 2011.

[4] F. Pietropaolo et al, “Precision measurement of the neutrino

velocity with the ICARUS detector in the CNGS beam”, Jour-

nal of High Energy Physics, 2012 (11): 49, pp. 1–21.

[5] S. Nellaga, “Realizzazione di un protocollo di rete per In-

put/Output industriale”, Tesi di Laurea, Facoltà Di Ingegne-

ria, Università degli Studi di Pavia, 2012.

[6] A. Rubini and F. Vaga, “ZIO User Manual (ver-

sion 1.0)”, http://www.ohwr.org/attachments/1896/

zio-manual-130121-v1.0.pdf.

[7] P. Alvarez, M. Cattin, J. H. Lewis, J. Serrano and T.

Wlostowski, “FPGA Mezzanine Cards for CERNs Acceler-

ator Control System”, in ICALEPCS’09, p. 376, 2009.

[8] E. Van der Bij, M. Cattin, E. Gousiou, J. Serrano and T.

Wlostowski, “ CERN’s FMC Kit”, ICALEPCS’2013 (to ap-

pear), WECOCB01; www.JACoW.org

MOMIB09 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

80C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution


