
JOGL LIVE RENDERING TECHNIQUES IN DATA ACQUISITION
SYSTEMS

C. Cocho , F. Cecillon, A. Elaazzouzi, J. Locatelli, Y. Le Goc, P. Mutti, H. Ortiz, J. Ratel*

Institut Laue-Langevin, Grenoble, France

Abstract
One of the major challenges in instrument control is to

provide a fast and scientifically correct representation of
the data collected by the detector through the data
acquisition system. Despite the availability nowadays of a
large number of excellent libraries for off-line data
plotting, the real-time 2D and 3D data rendering still
suffers of performance issues related namely to the
amount of information to be displayed.

The current paper describes new methods of image
generation (rendering) based on JOGL library used for
data acquisition at the Institut Laue-Langevin (ILL) on
instruments that require either high image resolution or
large number of images rendered at the same time. These
new methods involve the definition of data buffers and
the usage of the GPU memory, technique known as Vertex
Buffer Object (VBO). Implementation of different modes
of rendering, on-screen and off-screen, will be also
detailed.

INTRODUCTION
The NOMAD system [1] is used to set up and monitor

all the experiments carried out within the neutron
instruments at ILL. NOMAD is based on client-server
architecture: the C++ server contains all the routines and
algorithm/mathematical methods to set up and control the
instrument devices; on the other side the Java SWT client
is the graphical user interface (GUI) used control and data
visualization.

One important part of the GUI is the display where the
data obtained in the experiment are shown. There are
different graphic libraries than can be used to render data.
The Python scientific graphics libraries GuiQwt [2] and
PyQtGraph [3] offer interesting functionalities and
provide good performances for online rendering of 2D
graphics. However integration of Python code in the
Nomad environment is difficult. The Java libraries
TANGO [4] and Jzy3d [5] are easy to integrate and also
offer the rendering of real-time 2D graphics but they are
based on Java 2D [6] that benefits from a hardware
acceleration on major platforms but cannot reach the
performance of an OpenGL-based solution that is closer
to hardware and allows to take advantage of the most
performant capabilities of the graphic card.

Typically the Position Sensitive Detectors (PSD)
generate arrays of counted events which are either 1D or
2D corresponding to the geometry of the detector. An

additional dimension can be added if time-dependant
results are obtained. To visualize the detector data in
Nomad, we display a 2D color image.

 The reason why OpenGL [7] was chosen as a graphic
library in Nomad because we need a powerful library
capable to do onscreen rendering of large amounts of data
with a high refresh frequency. As the Nomad GUI is
developed in Java, we use the library JOGL [8] to be able
to have full OpenGL functionalities.

In the last years, the evolution of the instruments at ILL
has increased the quantity of data that needs to be
rendered and has led to performance problems. We found
out two main problems. The first was the long rendering
time required when having large amounts of data
corresponding to a single measure. The need to have real
time data display complicates the task. We decided to
improve our rendering technique by testing new
possibilities based on the usage of vertex arrays and
vertex buffers [9].

The second problem involved multiple data rendering
i.e. rendering different types of data or data generated by
different detectors. In this case, it was not necessary to
render the data on-screen and therefore the off-screen
rendering technique was implemented.

METHOD
OpenGL is based on a client-server structure [10]; the

client side corresponds to the part of the program that is in
CPU memory while the server side is the part that resides
in the Graphics Processing Unit (GPU) hardware and
memory. Scenes in OpenGL are defined as meshes of
triangles, which represent the geometry of the objects
drawn (known as vertices). Vertices are associated to
additional rendering information such as colors, textures.
More realistic rendering can be obtained by adding
lighting and shading information.

Figure 1: Simplified OpenGL pipeline.

OpenGL takes as input a set of vertices that are
transformed progressively into pixels. They are
temporarily assembled into triangle primitives before
being transformed into pixels during the rasterization

*cocho@ill.fr

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOAAB05

Experiment Control

ISBN 978-3-95450-139-7

1477 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

phase (See Figure 1). Note that OpenGL can render
meshes with perspective projection (“classic” 3D) or
orthographic projection. To render our 2D images, we
need to convert the detector data into a set of 2D vertices
associated to a color attribute and use the orthographic
projection.

On-screen Rendering
The initial algorithm used in Nomad for on-screen real

time rendering was the Immediate Mode. This consists of
the CPU communicating to the GPU all the data vertex by
vertex which implies that there are as many calls to the
GPU as vertices that need to be rendered. The Immediate
Mode is a widely used rendering technique due to its
simplicity; however it has a main drawback: the rendering
time increases considerably with increasing data size.

The bottleneck in this rendering algorithm is in the
excessive communication between the CPU and the GPU.
In order to avoid that, OpenGL provides the capability to
create and store all the data in one array in RAM and then
send it to the GPU. This technique is called Vertex Array
(VA) and allows to decrease the rendering time by
reducing the number of interactions between the CPU and
the GPU.

There are two main steps in this technique: the first one
is to define and fill the arrays and the second one is to
copy them to the GPU memory. The simplest arrays we
can have are the ones containing the vertices data and
another with the color data. The use of vertex arrays
allows reusing the vertex data: that is when multiple areas
share some vertices, these vertices will not be repeated in
the arrays, and therefore the amount of data stored is
smaller. In this case, it is possible to index our data and
use an index buffer in collaboration with the vertex one.
For our 2D rendering, we finally chose the use of indexed
vertex arrays.

Figure 2: Smooth rendering of a 2x2 detector.

The result of VA rendering is a smooth image, that is,
an image where the transition between the colors
associated to each vertex is smooth due to the behaviour
of OpenGL (See Figure 2). For the scientific purposes of
Nomad it is necessary to maintain the same look and feel
of the data produced by the detectors; that means we need
a pixelated image where each detector pixel is clearly

defined. To achieve this we have to quadruple our data
because each vertex will have four colors associated (See
Figure 3).

Figure 3: Non-smooth rendering of a 2x2 detector.

Even though the number of function calls is reduced,
VA technique requires not only the initialization of the
arrays (at least one vertex and one color array) but the
arrangement of the data in order to let the GPU to read it
properly.

A drawback of VA technique is that it stores the data in
the client side (CPU) and therefore does not make use of
the high-performance memory of the GPU. OpenGL
provides the buffer object functionality that allows storing
data in the server side (GPU). A buffer object is an
OpenGL object used to store an array of data in the GPU
memory. When the buffer object is used to store vertex
data they are called vertex buffer objects (VBO) [11]. As
with VA, the implementation of the VBO technique
requires the initialization of the arrays which will be
instantiated and filled using the same process.

In the Nomad system, most of the render frames
correspond to new data that need to be rendered (due to
the high refresh frequency). As the dimensions of the data
do not change (because the detector geometry does not
change), we do not need to recreate the vertex positions.
However due to the increasing number of counts with
time, and taking into account this variation of the number
of counts is represented (through the pipeline, as
described in Figure 1) by a colors scale, we need to
update the color values. The VBO technique does not
require to send the data to the GPU memory if it has not
changed. This fact represents an advantage compared to
VA that needs to transfer the entire arrays to the GPU at
each frame.

Off-screen Rendering
The implementation of VA and VBO based techniques

in Nomad was carried out in order to avoid high render
times when having a single heavy measure (data produced
by a big surface detector). However there are other
situations where the problem is not the size of the data to
be rendered but the number of different data sources to
render at the same time. This is the case of instruments

FRCOAAB05 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1478C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

which have multiple detectors and therefore generate
multiple images. Having real time rendering was not
required and, as the rendered images were meant to be
used not only in displays, we decided to do off-screen
rendering.

The off-screen rendering consists of rendering an image
which is not going to be displayed directly but saved in
memory or as an image file. In our case, the off-screen
rendering was done by implementing the Frame Buffer
Objects (FBO). A FBO [12] is an OpenGL object that
allows to define Framebuffers. A Framebuffer is a group
of buffers used for rendering purposes.

Each JOGL application has one or more contexts that
store the rendering states (selected buffers, etc.). When
creating an OpenGL context a default Framebuffer is
created. It represents the display or window where the
image is rendered. In fact it is the combination of up to
four color buffers (most commonly known as the front
and back buffers). In addition to that, OpenGL allows any
user to define their own Framebuffers for multiple
purposes such as rendering to textures and doing off-
screen rendering. Framebuffers are composed of different
types of buffers depending on the type of data to store. In
our case, as we wanted to implement off-screen rendering,
we used the OpenGL buffers foreseen to that: the render
buffers. Once the FBO are initialized, following the same
process as with other OpenGL objects such as VBO, the
rendering algorithm is exactly the same as the one used in
on-screen mode.

In our case, the main purpose of the off-screen
rendering was to generate images which represent the
detector status for the running experiments. The status of
each running experiment can be followed thought the ILL
web page (http://nomad.ill.fr). As the generation of the
off-screen images is independent of the Nomad client, we
implemented an off-screen client which renders the data
when necessary.

RESULTS
We carried out different performance tests for the on-

screen rendering of detector data. We focused on
measuring the time necessary to render a specific amount
of data. The tests were done by setting up a simple display
were the data rendered changed with a given frequency.

We run the same tests for the three methods:
Immediate, Vertex Array and Vertex Buffer Object. For all
of them the aim was to study the evolution of the
rendering times as a function of the size of data.

Even though we studied the overall rendering time, its
definition is strictly dependent on the rendering technique.
In the case of the Immediate Mode, the rendering time is
the time to pass and render the data. In the case of VA and
VBO, the whole time can be divided in three parts: the
first one is the initialization time, the second one is the
updating time (if necessary) and the third one is the
drawing time.

Figure 4: Initialization time comparison for Immediate
Mode, Vertex Array and Vertex Buffer Object rendering
techniques.

For the Vertex Array, the initialization time is the time
required to initialize and fill the arrays of vertices, colors
and indices. The update time is the time to pass all the
data including the vertex array as well as the color array
from the CPU to the GPU.

For the Vertex Buffer Object, the initialization time is
also the time to initialize and fill the arrays of vertices,
colors and indices. However the update time is the time to
pass only the color array as the size of the data is constant
and the vertex coordinates do not change.

Tests were performed on a linux PC running at
3.33GHz and 4GB of memory with nVidia Quadro
(256MB) graphics card. Note that results may vary
depending on graphics cards.

The results showed that VBO technique has the best
performance (See Figure 5). The only drawback is the
higher time needed to initialize the buffer objects (time
which depends on the buffers size), as shown in Figure 4.

Figure 5: Drawing time comparison for Immediate Mode,
Vertex Array and Vertex Buffer Object rendering
techniques.

While doing the performance tests we found out that
the Java Virtual Machine JVM (JVM) runs out of memory
when using data size exceeding 4096*4096 points.

 Most of the objects created by Java reside in the heap
memory (the Garbage collector is in charge of cleaning
it). However the JVM also uses native memory. Both

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOAAB05

Experiment Control

ISBN 978-3-95450-139-7

1479 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

 memory sizes can be configured by changing the value
of specific JVM properties [13].

A group of memory tests were done in order to study
how the memory configuration of the JVM influenced the
maximum size of our buffers. The tests consisted of
increasing heap and native memory size independently for
a specific size of data and analyse when the JVM runs out
of memory. We repeated the same process changing the
data size.

These memory tests provided us the ideal JVM
configuration for a specific amount of data to render.

CONCLUSION
After all the tests were carried out, VBO technique was

shown to be the most efficient, especially for large
amounts of data.

However for large detector geometries producing large
amounts of data, we found that the amount of data to
render was excessive regarding the size of the display.
Most of the time such a quantity of information is not
appreciated by our vision. A further optimization is trying
to reduce the size of data buffers used in VBO technique
by reducing the quantity of data to render.

Moreover, as we are interested in having a pixelated
image, the vertex reuse provided by VBO technique (and
also VA) is not utilised. In this case, there is little interest
in having an index buffer. We can just define two buffers
one for the color data and another for the vertex data. In
this case, the overall memory used will be also
diminished.

It is also important to point out that even though we
were interested in using VBO to increase our rendering
performance, there is another important characteristic in
VBO: the capability to use the same data stored in GPU
memory for different purposes. That means if our
application must render the same data in different ways,
for example on-screen and off-screen, it will only be
necessary to store the data in the GPU one time.

REFERENCES

[1] P. Mutti, "Nomad-More than a Simple Sequencer”.
ICALEPCS'11, Grenoble, France.

[2] guiQWT. http://code.google.com/p/guiqwt/
[3] PyQtGraph. http://www.pyqtgraph.org/
[4] TANGO. http://www.tango-controls.org/
[5] Jzy3d. http://www.jzy3d.org/
[6] Java 2D. http://docs.oracle.com/javase/tutorial/2d/
[7] Nicholas Haemel, Graham Sellers, Benjamin

Lipchak Richard S.Wright Jr, "OpenGL
SuperBible," in OpenGL SuperBible, Fifth Edition
ed., ch. 2: Getting Started, p. 34.

[8] Java Binding for the OpenGL (JOGL).
https://jogamp.org/jogl/www/

[9] Mark J.Kilgard, Modern OpenGL usage: Using
Vertex Buffer Objects well, September 9, 2008.

[10] Nicholas Haemel, Graham Sellers, Benjamin
Lipchak Richard S.Wright Jr, OpenGL SuperBible.,
ch. 3: Basic Rendering, p. 81.

[11] OpenGL Vertex Specification.
http://www.opengl.org/wiki/Vertex_Specification

[12] OpenGL Framebuffer Object.
http://www.opengl.org/wiki/Framebuffer_Object

[13] JVM Memory Settings and System Performance.
http://www.ibm.com/developerworks/library/j-
nativememory-linux/

FRCOAAB05 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1480C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

