
EXPERIMENT CONTROL AND ANALYSIS FOR HIGH-RESOLUTION
TOMOGRAPHY∗

N. Schwarz† , F. De Carlo, A. Glowacki, J.P. Hammonds, F. Khan, K. Yue
ANL, Argonne, IL 60439, USA

Abstract

X-ray Computed Tomography (XCT) is a powerful
technique for imaging 3D structures at the micro- and
nano-levels. Recent upgrades to tomography beamlines
at the APS have enabled imaging at resolutions up to 20
nm at increased pixel counts and speeds. As detector
resolution and speed increase, the amount of data that must
be transferred and analyzed also increases. This coupled
with growing experiment complexity drives the need for
software to automate data acquisition and processing. We
present an experiment control and data processing system
for tomography beamlines that helps address this concern.
The software, written in C++ using Qt, interfaces with
EPICS for beamline control and provides live and offline
data viewing, basic image manipulation features, and scan
sequencing that coordinates EPICS-enabled apparatus.
Post acquisition, the software triggers a workflow pipeline,
written using ActiveMQ, that transfers data from the
detector computer to an analysis computer, and launches
a reconstruction process. Experiment metadata and
provenance information is stored along with raw and
analyzed data in a single HDF5 file.

INTRODUCTION
The Advanced Photon Source (APS) is the nation’s

premier source of hard (10-100 keV) x-rays. In recent
years, the very high x-ray photon flux generated by the APS
has been matched by a new generation of detectors that are
able to collect x-ray images at faster speeds. This enables
real-time, in situ, and dynamic studies, but also presents
challenges related to experiment control, analysis, and data
management.

In standard tomography experiments, a series of
regularly spaced projections is acquired as the sample
is rotated 180 degrees about its center axis. Using
monochromatic beam illumination from an APS bending
magnet source, an old generation Coolsnap K4 CCD
camera with 2048x2048 pixels was able to acquire the
needed 1500 projections in 15 to 25 minutes. A new
generation sCMOS camera like the Cooke pco.edge camera
with 2560x2160 pixels can acquire the same data in 15
seconds. An even faster camera like the Cooke pco.dimax
can collect the same data in 300 ms using polychromatic
beam illumination.

∗Work supported by U.S. Department of Energy, Office of Science,
under Contract No. DE-AC02-06CH11357.
† nschwarz@aps.anl.gov

The addition of experiment equipment, such as furnaces
and pressure chambers, adds complexity to standard
tomography acquisition. Tomography beamlines may
also take advantage of automated sample changers to
increase throughput. After data acquisition completes,
but before any further analysis can be performed, the
tomographic projections must be reconstructed to produce
a 3D volumetric representation of the sample. Figure 1
shows the overall architecture of a tomography system at
the APS.

EXPERIMENT CONTROL SOFTWARE
The experiment control software shown in Figure 2 is

the main interface through which users set up and run
tomography measurements. The system has a number of
features related to image viewing and data collection.

Features
Live and offline data can be displayed. The application

can capture single, multiple, or continually streamed
images. All standard Area Detector [1] properties such
as binning, region-of-interest (ROI), gain, exposure time,
acquire period, data type, image mode, etc. can be
configured. Detector-specific features exposed with Area
Detector may also be made accessible.

Graphical annotations are available as image overlays
for simple analysis or system calibration. A marker
annotation allows users to mark static points in the image.
A calibrated ruler annotation allows quick measurements
in user-defined units.

Color maps and contrast can be adjusted by setting
RGB values, and the low and high values can be clamped
using a graphical editor. An auto-levels function searches
for the lowest and highest non-zero value and clamps the
map appropriately.

EPICS-enabled devices, such as motors, are displayed
on a separate calibration window. These devices may be
configured dynamically via the application’s preferences
window. Devices may be added, removed, or disabled
during run time. The addition or removal of devices is
reflected automatically in the user interface without the
need to edit traditional display manager configuration files.

Configurable scanning is the most important feature of
the experiment control software. The system is designed to
be extensible and easy for a non-expert user to configure.
Users can configure all scan parameters via the user
interface.

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOAAB03

Experiment Control

ISBN 978-3-95450-139-7

1469 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Lustre	

File	

System	

5. Save
results into
original
HDF5 file	
Lustre	

File	

System	

Local	

Disk	

4. Launch
reconstruction	
3. Transfer	
Area	

Detector	

IOC	

Beamline	

IOC	

2. Save to
HDF5 file	

Channel Access	

Data	

Pipeline	

1. Control IOCs	

GridRec	

Figure 1: Components of the tomography control, acquisition, and reconstruction system in use at the APS. (1) Experiment
control software coordinates EPICS-enabled motors, detectors, and other apparatus using the Channel Access protocol.
(2) EPICS Area Detector software writes data in HDF5 files to locally attached storage. (3) Data is transferred using
gridFTP from the detector computer to a central Lustre file system. (4) Tomographic reconstructions are created from
acquired projection data stored on the central Lustre file system. (5) Reconstructed data are added to the same HDF5 file
containing original raw projection data.

Figure 2: Experiment control software’s main window
(top) and calibration window (bottom). The main window
shows the color editor on the left, the acquisition display
in the center, tomography scan settings on the right, and
nested loop controls on the bottom.

Users can configure properties for basic tomography
scans using widgets on the right side of the acquisition
window. Settings include the number of pre-, inner-
and post-white and dark field images, the number of
projections, start and stop positions, and motor speed.
Tomography scans may be nested within higher-level
loops. These loops can change some number of other
EPICS-enabled [2] devices via their Channel Access PVs.
A dockable GUI component allows the user to graphically
create, edit, and monitor the progress of nested loops.

Architecture
The overall architecture of the experiment control

software is shown in Figure 3. The application is written
in C++ using Qt [3] as the GUI toolkit. Qt provides
multi-platform GUI widgets allowing the software to run
on Linux, Mac, and Windows platforms. The application
is divided into three separate support libraries that provide
classes for graphics tools, data types and formats, and a
Channel Access scanning library.

GStar is a GUI component library utilizing the Qt
framework. It consists of classes related to the user
interface. There are classes for displaying images in
acquisition windows, graphical annotations, color map and
contrast controls, and creating histogram plots.

DStar is a data type and format library. It abstracts
details of file formats by providing a single interface. DStar
is built on top of the HDF5 [4] and libTIFF libraries. GStar
components use DStar’s interfaces and data types when
using image data.

SStar is a C++ wrapper around the EPICS Channel
Access API and implements classes for scanning PVs.

FRCOAAB03 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1470C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

 Qt	

Tomography Experiment Control Software	

GStar	
 SStar	
 DStar	

EPICS CA	
 HDF5	
 TIFF	

Figure 3: High-level component architecture of the
tomography experiment control software.

It has classes for PV data access, and data change and
connection change events. It also acts as a multiplexer
between the application and PVs so that multiple software
components can send and receive data to a single PV
without creating multiple connections.

PV values are displayed and manipulated with a small
set of PV-aware widgets. The class PVWidget serves as
the base class from which other GUI components that
connect to PVs are derived. For example, PVLabel displays
PV values like read back data, PVSpinBox is used for
editing numeric data, and PVComboBox is used to select
from enumerated values. Initially, a PVWidget connects
to a PV and queries information such as its data type. If
no connection is preset the PVWidget will disable itself.
When the connection is established the widget enables
itself. Each PVWidget displays the PV it is connected to
when hovering the mouse over it for a few seconds. More
complex controls can be derived, such as the PVMotor
class. This class is used in the calibration display. It
consists of a PVSpinBox for editing the motor’s position,
PVLabel for reading the motor’s read back value, and
another PVSpinBox for tweak controls.

Multiple area detectors are available and more can
be added by creating new Area Detector profiles. An
ADProfile class is created for each area detector. ADProfile
serves as a layout with properties for a particular camera,
such as binning, gain, etc. EPICS-aware widgets and their
relationship to an Area Detector profile are shown in Figure
4.

The scanning core is implemented using the Command
design pattern [5]. Figure 5 shows the class diagram
for this system. The ScanCommand is an abstract
interface. Each concrete implementation performs a
specific set of PV operations using the SStar::PV class.
The ScanSequenceCommand is the basic type of command
that performs a series of PV operations in a sequence.
This sequence can be repeated in a loop using the
ScanLoopCommand. The Loop interface is a template
that generates any sequence of values for the loop,
including a fixed step function and a fixed table of values.
Multiple scan commands can be grouped together using
ScanMacroCommand. Execution of commands is handled
by the Scan class. Primitive operations on PVs, such as
setting a value, getting a value, and waiting for the PV to
be set to a specific value, are done by the Scan command
as specified by individual instances of the command.

QWidget	

PVWidget	

PVLabel	

PVLineEdit	

PVComboBox	

PVSpinBox	

SStar::PV	

QWidget	

AbstractWidget	

ADProfile	

ADFactory	

AcqWidget	

SimulatorProfile	
 NeoAndorProfile	
 PCOEdgeProfile	

Figure 4: Class diagram of EPICS aware widgets (top) and
their relationship to the Area Detector profiles (bottom).

RECONSTRUCTION
Once acquisition is complete, the experiment control

software uses the workflow pipeline to transfer data to
the Lustre central file system. It does this by queuing
a message to begin the file transfer. After data transfer
is complete, another message is queued to launch the
reconstruction process. The reconstruction code is an
implementation of the FFT-based GRIDREC algorithm that
reconstructs two data sets at once: one in the real part and
one in the imaginary part of the FFT [6]. The application is
multi-threaded and runs on a single high-end workstation.

The reconstructed data is stored in the same HDF5
file as the raw projection data and experiment metadata.
Provenance information about the experiment and
processing steps are stored as well. The exact structure of
the HDF5 file is well defined and extensively documented
by the Scientific Data Exchange format [7].

PIPELINE
A workflow pipeline is used to connect phases of the

process. It uses an industry-standard messaging system
for reliable task sequencing and triggering. Generic actors
handle common tasks such as file transfers. Technique-
specific analysis code is implemented or called from
custom actors that may be written in Java, C++ or Python.

The pipeline is a series of stages connected by message

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOAAB03

Experiment Control

ISBN 978-3-95450-139-7

1471 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

ScanCommand	

ScanLoopCommand	

ScanMacroCommand	

ScanSequenceCommand	

Scan	
SStar::PV	

Loop <T>	

Figure 5: Class diagram of Channel Access PV scanning
components in the SStar library.

queues. Stages may interface with the acquisition software,
they may be data analysis software, or they may transfer
files. Stages may be written in a variety of different
programming languages, including C++, Java, and Python.
Message queues are how stages are connected. When a
stage is done with its task, it queues a message for the next
stage in line. That stage will eventually get to that message
and process it. The ActiveMQ [8] implementation of the
JMS standard is used.

A stage in the pipeline is composed of two classes:
the Director and the Actor. The Director is the interface
to the message queue. The Director handles processing
incoming and outgoing job messages, constructing signal
messages for the next stage, and handles control signals for
killing or restarting jobs. Additionally, the Director keeps
a history of all messages being processed by the queuing
system. The Actor is a simple class definition that requires
the implementation of two methods: execute() and abort().
Both methods return a status to the pipeline. Figure 6
summarizes these components.

CONCLUSIONS
The system is in production use at the newly upgraded

nano-tomography station at the APS 32-ID beamline. It
is soon to be deployed at the existing micro-tomography
station at the APS 2-BM beamline. The experiment control
software has been well received by staff and users. A
typical raw tomographic dataset of 1500 projections at
2048x2048 resolution takes about 5 minutes to reconstruct
using a modern 12-core workstation with 32 GB of
RAM. The combination of configurable experiment control
software, a multi-threaded reconstruction application, and
a modern messaging backend that ties together different
components allows more efficient utilization of equipment
and beam time.

Director	

topic	

queue	

queue	

queue	

History
Producer	

Job Message
Producer	

Execute Actor	

Control Topic
Consumer	

Job Message
Consumer	

Update
Provenance	

Pipeline Stage	

Director	

Actor	

queue	
 queue	

stage	
 stage	
 stage	

Overview	

incoming
messages	

outgoing
messages	

Figure 6: The overview of the pipeline architecture (top).
A pipeline stage that performs an action (center). The
pipeline Director that regulates messages and actives of the
pipeline (bottom).

ACKNOWLEDGMENT
We’d like to thank Alex Deriy, Chris Jacobsen,

Tim Mooney, Mark Rivers, Giampiero Sciutto, Pavel
Shevchenko, Steve Wang, and Xianghui Xiao for their
assistance and support.

REFERENCES
[1] Area Detector,

http://cars9.uchicago.edu/software/epics

[2] EPICS, http://www.aps.anl.gov/epics

[3] Qt, http://qt-project.org

[4] Hierarchical Data Format version 5 (HDF5), 2000-2010.
http://www.hdfgroup.org/HDF5

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
(Addison-Wesley Longman, 1995).

[6] M. L. Rivers, “tomoRecon: High-speed tomography
reconstruction on workstations using multi-threading,” Proc.
of SPIE 8506, Developments in X-Ray Tomography VIII,
85060U (2012).

[7] The Scientific Data Exchange, http://www.aps.anl.gov/
DataExchange

[8] Apache ActiveMQ, http://activemq.apache.org

FRCOAAB03 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1472C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

