Author: Roderick, C.
Paper Title Page
MOPPC139 A Framework for Off-line Verification of Beam Instrumentation Systems at CERN 435
 
  • S. Jackson, C. Roderick, C. Zamantzas
    CERN, Geneva, Switzerland
 
  Many beam instrumentation systems require checks to confirm their beam readiness, detect any deterioration in performance and to identify physical problems or anomalies. Such tests have already been developed for several LHC instruments using the LHC sequencer, but the scope of this framework doesn't extend to all systems; notably absent in the pre-LHC injector chain. Furthermore, the operator-centric nature of the LHC sequencer means that sequencer tasks aren't accessible by hardware and software experts who are required to execute similar tests on a regular basis. As a consequence, ad-hoc solutions involving code sharing and in extreme cases code duplication have evolved to satisfy the various use-cases. In terms of long term maintenance, this is undesirable due to the often short-term nature of developers at CERN alongside the importance of the uninterrupted stability of CERN's accelerators. This paper will outline the first results of an investigation into the existing analysis software, and provide proposals for the future of such software.  
 
TUPPC028 The CERN Accelerator Logging Service - 10 Years in Operation: A Look at the Past, Present, and Future 612
 
  • C. Roderick, L. Burdzanowski, G. Kruk
    CERN, Geneva, Switzerland
 
  During the 10 years since it's first operational use, the scope and scale of the CERN Accelerator Logging Service (LS) has evolved significantly: from an LHC specific service expected to store 1TB / year; to a CERN-wide service spanning the complete accelerator complex (including related sub-systems and experiments) currently storing more than 50 TB / year on-line for some 1 million signals. Despite the massive increase over initial expectations the LS remains reliable, and highly usable - this can be attested to by the 5 million daily / average number of data extraction requests, from close to 1000 users. Although a highly successful service, demands on the LS are expected to increase significantly as CERN prepares LHC for running at top energy, which is likely to result in at least doubling current data volumes. Furthermore, focus is now shifting firmly towards a need to perform complex analysis on logged data, which in-turn presents new challenges. This paper reflects on 10 years as an operational service, in terms of how it has managed to scale to meet growing demands, what has worked well, and lessons learned. On-going developments, and future evolution will also be discussed.  
poster icon Poster TUPPC028 [3.130 MB]