Author: Locci, F.
Paper Title Page
MOPPC031 IEPLC Framework, Automated Communication in a Heterogeneous Control System Environment 139
 
  • F. Locci, S. Magnoni
    CERN, Geneva, Switzerland
 
  Programmable Logic Controllers (PLCs, PXI systems and other micro-controller families) are essential components of CERN control's system. They typically present custom communication interfaces which make their federation a difficult task. Dependency from specific protocols makes code not reusable and the replacement of old technology a tedious problem. IEPLC proposes a uniform and hardware independent communication schema. It automatically generates all the resources needed on master and slave side to implement a common and generic Ethernet communication. The framework consists of a set of tools, scripts and a C++ library. The JAVA configuration tool allows the description and instantiation of the data to be exchanged with the controllers. The Python scripts generate the resources necessary to the final communication while the C++ library, eventually, allows sending and receiving data at run-time from the master process. This paper describes the product by focusing on its main objectives: the definition of a clear and standard communication interface; the reduction of user’s developments and configuration time.  
poster icon Poster MOPPC031 [2.509 MB]  
 
THCOBB06 CLIC-ACM: Acquisition and Control System 1404
 
  • B.P. Bielawski, F. Locci, S. Magnoni
    CERN, Geneva, Switzerland
 
  CLIC (Compact Linear Collider) is a world-wide collaboration to study the next “terascale” lepton collider, relying upon a very innovative concept of two-beam-acceleration. In this scheme, the power is transported to the main accelerating structures by a primary electron beam. The Two Beam Module (TBM) is a compact integration with a high filling factor of all components: RF, Magnets, Instrumentation, Vacuum, Alignment and Stabilization. This paper describes the very challenging aspects of designing the compact system to serve as a dedicated Acquisition & Control Module (ACM) for all signals of the TBM. Very delicate conditions must be considered, in particular radiation doses that could reach several kGy in the tunnel. In such severe conditions shielding and hardened electronics will have to be taken into consideration. In addition, with more than 300 channels per ACM and about 21000 ACMs in total, it appears clearly that power consumption will be an important issue. It is also obvious that digitalization of the signals acquisition will take place at the lowest possible hardware level and that neither the local processor, nor the operating system shall be used inside the ACM.  
slides icon Slides THCOBB06 [0.846 MB]  
poster icon Poster THCOBB06 [0.747 MB]