Paper | Title | Page |
---|---|---|
MOMIB03 | Control Systems Issues and Planning for eRHIC | 58 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The next generation of high-energy nuclear physics experiments involve colliding high-energy electrons with ions, as well as colliding polarized electrons with polarized protons and polarized helions (Helium-3 nuclei). The eRHIC project proposes to add an electron accelerator to the RHIC complex, thus allowing all of these types of experiments to be done by combining existing capabilities with high energy and high intensity electrons. In this paper we describe the controls systems requirements for eRHIC, the technical challenges, and our vision of a control system ten years into the future. What we build over the next ten years will be what is used for the ten years following the start of operations. This presents opportunities to take advantage of changes in technologies but also many challenges in building reliable and stable controls and integrating those controls with existing RHIC systems. This also presents an opportunity to leverage on state of the art innovations and build collaborations both with industry and other institutions, allowing us to build the best and most cost effective set of systems that will allow eRHIC to achieve its goals. |
||
![]() |
Slides MOMIB03 [0.633 MB] | |
![]() |
Poster MOMIB03 [2.682 MB] | |
TUCOCA03 | Machine Protection Issues for eRHIC | 914 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The eRHIC electron beams will be damaging both directly and as a result of synchrotron radiation. The machine protection and abort systems will be designed to prevent any equipment damage from the electron beams. In this paper we will review the requirements for the machine protection systems and the plans we have put into place to better evaluate the failure probabilities, beam abort systems designs, and overall machine protection systems designs. The machine protection systems will include a beam permit system that has inputs from loss monitors, power supplies, superconducting RF monitors, vacuum chamber heating monitors, water temperature, quench detectors, access controls systems, vacuum monitors, and longer term beam lifetime or slow loss monitors. There are three systems associated with the machine protection and beam abort systems; the beam permit link, the abort kicker systems, and the beam dumps. We describe the requirements for these systems and present our current plans for how to meet the requirements. |
||
![]() |
Slides TUCOCA03 [2.012 MB] | |
MOPPC075 | A Monte Carlo Simulation Approach to the Reliability Modeling of the Beam Permit System of Relativistic Heavy Ion Collider (RHIC) at BNL | 265 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The RHIC Beam Permit System (BPS) monitors the health of RHIC subsystems and takes active decisions regarding beam-abort and magnet power dump, upon a subsystem fault. The reliability of BPS directly impacts the RHIC downtime, and hence its availability. This work assesses the probability of BPS failures that could lead to substantial downtime. A fail-safe condition imparts downtime to restart the machine, while a failure to respond to an actual fault can cause potential machine damage and impose significant downtime. This paper illustrates a modular multistate reliability model of the BPS, with modules having exponential lifetime distributions. The model is based on the Competing Risks Theory with Crude Lifetimes, where multiple failure modes compete against each other to cause a final failure, and simultaneously influence each other. It is also dynamic in nature as the number of modules varies based on the fault trigger location. The model is implemented as a Monte Carlo simulation in Java, and analytically validated. The eRHIC BPS will be an extension of RHIC BPS. This analysis will facilitate building a knowledge base rendering intelligent decision support for eRHIC BPS design. |
||
![]() |
Poster MOPPC075 [0.985 MB] | |
MOPPC076 | Quantitative Fault Tree Analysis of the Beam Permit System Elements of Relativistic Heavy Ion Collider (RHIC) at BNL | 269 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The RHIC Beam Permit System (BPS) plays a key role in safeguarding against the anomalies developing in the collider during a run. The BPS collects RHIC subsystem statuses to allow the beam entry and its existence in the machine. The building blocks of BPS are Permit Module (PM) and Abort Kicker Module (AKM), which incorporate various electronic boards based on VME specification. This paper presents a quantitative Fault Tree Analysis (FTA) of the PM and AKM, yielding the hazard rates of three top failures that are potential enough to cause a significant downtime of the machine. The FTA helps tracing down the top failure of the module to a component level failure (such as an IC or resistor). The fault trees are constructed for all module variants and are probabilistically evaluated using an analytical solution approach. The component failure rates are calculated using manufacturer datasheets and MIL-HDBK-217F. The apportionment of failure modes for components is calculated using FMD-97. The aim of this work is to understand the importance of individual components of the RHIC BPS regarding its reliable operation, and evaluate their impact on the operation of BPS. |
||
![]() |
Poster MOPPC076 [0.626 MB] | |