Author: Binello, S.
Paper Title Page
THPPC024 Operating System Upgrades at RHIC 1138
 
  • S. Binello, A. Fernando, R.A. Katz, J.S. Laster, J. Piacentino
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Upgrading hundreds of machines to the next major release of an Operating system (OS), while keeping the accelerator complex running, presents a considerable challenge. Even before addressing the challenges that an upgrade represents, there are critical questions that must be answered. Why should an upgrade be considered? (An upgrade is labor intensive and includes potential risks due to defective software.) When is it appropriate to make incremental upgrades to the OS? (Incremental upgrades can also be labor intensive and include similar risks.) When is the best time to perform an upgrade? (An upgrade can be disruptive.) Should all machines be upgraded to the same version at the same time? (At times this may not be possible, and there may not be a need to upgrade certain machines.) Should the compiler be upgraded at the same time? (A compiler upgrade can also introduce risks at the software application level.) This paper examines our answers to these questions, describes how upgrades to the Red Hat Linux OS are implemented by the Controls group at RHIC, and describes our experiences.
 
poster icon Poster THPPC024 [0.517 MB]  
 
THPPC113 Integrated Timing System for the EBIS Pre-Injector 1325
 
  • J. Morris, S. Binello, L.T. Hoff, C. Theisen
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Electron Beam Ion Source (EBIS) began operating as a pre-injector in the C-AD RHIC accelerator complex in 2010.   Historically, C-AD RHIC pre-injectors, like the 200MeV Linac, have had largely independent timing systems that receive a minimal number of triggers from the central C-AD timing system to synchronize the injection process.  The EBIS timing system is much more closely integrated into central C-AD timing, with all EBIS machine cycles included in the master supercycle that coordinates the interoperation of C-AD accelerators.   The integrated timing approach allows better coordination of pre-injector activities with other activities in the C-AD complex. Independent pre-injector operation, however, must also be supported by the EBIS timing system. This paper describes the design of the EBIS timing system and evaluates experience in operational management of EBIS timing. 
 
poster icon Poster THPPC113 [21.388 MB]  
 
THCOBB03 Automating Control of the Beams for the NASA Space Radiation Laboratory 1392
 
  • K.A. Brown, S. Binello, M.R. Costanzo, T. D'Ottavio, J.P. Jamilkowski, J. Morris, S. Nemesure, R.H. Olsen, C. Theisen
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The NASA Space Radiation Laboratory (NSRL) at BNL uses many different beams to do experiments associated with evaluating the possible risks to astronauts in space environments. This facility became operational in 2003 and operates from the AGS Booster synchrotron. In order to simulate the space radiation environment some of these experiments need to make use of beams of various energies. To simulate solar flare events, we implemented the Solar Particle Simulator in 2005. This system put in modifications to the accelerator controls to allow beam energies to be changed automatically, enabling target samples to be irradiated with many energies of the same type of ion, without having to make use of degraders. To simulate Galactic Cosmic events, they need to also be able to automatically change the ions used to irradiate a single sample. This project aims to allow NSRL to change ions as well as beam energies within a very short period of time. To do this requires modifications to existing controls as well as building new controls for a laser ion source. In this paper we describe NSRL, our plans to implement the Galactic Cosmic Event Simulator, and the status of the laser ion source.
 
slides icon Slides THCOBB03 [4.853 MB]