

Position Resolution of Optical Fibre-Based Beam Loss Monitors using long electron pulses

- E. Nebot del Busto^(1,2,3), M. J. Boland^(4,5), S. Doebert⁽¹⁾, F. S. Domingues⁽¹⁾, E. Effinger⁽¹⁾, W. Farabolini^(1,6), E. B. Holzer⁽¹⁾, M. Kastriotou^(1,2,3), R. P. Rasool⁽⁴⁾, W. Vigano⁽¹⁾ and C.P. Welsch^(2,7)
- (1) CERN, Geneva, Switzerland
- (2) The University of Liverpool, Department of physics, Liverpool, U. K
- (3) The Cockcroft Institute, Warrington, U.K
- (4) The Australian synchrotron (ASCo), Clayton, Victoria, Australia
- (5) The University of Melbourne, Melbourne, Australia
- (6) CEA/DSM/IRFU, Saclay, France

Outlook

Introduction

- Motivation
- The optical fibre BLM (oBLM) system
- The machines

Measurements at the Australian Synchrotron

- Understanding beam losses: single bunch
- Intrinsic time resolution
- Beam Losses with Multi-bunch

Measurements at the CLIC Test Facility (CTF3)

- Position resolution with long (1 μ s) bunch trains

Summary and conclusions

Introduction

ļ

Optical fiber BLM (oBLM) systems are becoming a popular technique since it provides several advantages

- Full coverage of beam lines
 - Optical fibres up to ~100m (limited by attenuation)
- Position resolution
 - Down to ~50cm with short (< 1 ns) beam pulses

H. Henschel et. al, "Fiber optic radiation	D. Di Giovenale et. al, "A read-out system	L. Devlin et. al, "Update on Beam Loss
system for TESLA". TESLA-Report No.	for online monitoring of intensity and	Monitoring at CTF3 for CLIC", Proc.
2000-25 (2000).	position of beam losses in electron linacs".	IBIC13 (2013)
	NIM A665 (2011) 33.	
M. Körfer et. al, "Fiber optic radiation	M. Marechal et. al, "Design, development	<i>E. Nebot et. al, "Measurement of Beam</i>
sensor systems for particle accelerators"	and operation of fiber-based Chernkov beam	<i>Losses Using Optical Fibers at the Australian</i>
NIM A526 (2004) 537.	loss at Srping-8". NIM A673 (2012) 32.	<i>Synchrotron</i> ", Proc. IBIC14 (2014)

Is beam loss position determination possible in machines with long pulses?

e.g CLIC bunch pulse of 150 ns length

The oBLM system

BLM system based on Cherenkov light

- Optical fibre:
 - 200/245/365 um core/cladding/coating pure Silica
 - High OH content
 - Nylon jacket to protect against: humidity, ambient light
- Custom made photon sensing modules
 - Silicon Photomultiplier ($3x3 \text{ mm}^2$, 14000 pixels, G = 10^{+5} 10^{+6})
 - Low pass filters (bias input) for noise filtering
- Custom high sampling (1-4GS/s) and high bandwidth (250 MHz- 2 GHz) ADCs

E. Nebot del Busto

The Machines

oBLM installed for testing in two electron machines

- The Storage Ring of the Australian Synchrotron
- The Test Beam Line in the CLIC Facility (CTF3) at CERN

E. Nebot del Busto

Understanding Beam Losses I

Most studies performed on losses generated in the first turn

Two loss points on opposite sides of FIBRE GAP

$$\Delta x = \frac{L_{RING} - c\Delta t}{1 + n_Q}$$

Two loss points on same side of FIBRE GAP

$$\Delta x = \frac{c\Delta t}{1+n_Q}$$

Understanding Beam Losses II

Multi peaks observed due to losses in different positions

Scraper Fibre

RF Fibre

Intrinsic time resolution I

Single bunch injection

Consecutive filling RF buckets 1-10

- Looking at the raising edge of losses "at scrapers"
 - Well defined loss location

- One bucket (2 ns) shift disentangled shot by shot
 - $V_{oBLM}(t = t_{photon}) = V_{thr}$
 - t_{photon} → Photon arrival time (to upstream end)

E. Nebot del Busto

Intrinsic time resolution II

Time response study based on photon arrival time

 - Δt < 2 ns explored by shifting Booster RF phase by 180 degrees with respect to Storage Ring RF phase

E. Nebot del Busto

Intrinsic time resolution III

Time resolution study based on Δt = t_{photon} - t_{mean}

t_{mean} = t_{off} + n_{bucket} x T_{RF} (central time of nth bucket)

E. Nebot del Busto

Multi bunch Beam Losses

Ş Multi peaks observed due to losses in different positions

- Rising edge still provides loss location information
- Signal de-convolution required for losses in near positions

Current profile of 75 bunch train

E. Nebot del Busto

RF Fibre

Losses with long bunch trains I

- Signal subtraction to account for showers from TBL only

Losses with long bunch trains II

Determination of loss location from signal leading edge

- Good qualitative agreement between oBLM and BPM profile loss measurements
- Localisation of loss down to (below) 2 m achieved

E. Nebot del Busto

Ş

Losses with long bunch trains III

Determination of loss location from signal leading edge

- Good qualitative agreement between oBLM and BPM profile loss measurements
- Localisation of loss down to (below) 2 m achieved

E. Nebot del Busto

Ş

Summary and conclusions

An oBLM system based on quartz fibres and SiPMs has been installed and tested in two electron machines

- The TBL at CTF3
- The Storage Ring of the Australian Synchrotron

Measurements with single bunch have been performed:

- To understand beam losses and verify loss location reconstruction
- To determine the intrinsic time resolution: better than 300 ps

First attempt to obtain loss location with multi bunch pulses

- Position resolution with long (1 μ s) bunch trains achieved at CTF3
- Further signal processing necessary due to increasing beam profile along bunch train at the Australian Synchrotron

Thank you for your attention !!

Acknowledgments: N. Basten, P. Giansiracusa, A. Michalczyk, T. Lucas,and the operation team of CTF3 and the Australian Synchrotron

Back up slides

The Australian Synchrotron

• The AS comprises

- LINAC (10 m): 90 keV to 100 MeV
- Booster (130 m): 100MeV to 3 GeV
- Storage Ring (216 m): 3 GeV

Sit muni purumeters		
Energy	3 GeV	
Total design current	200 mA	
Circumference	216 metres	
RF frequency	499.654 ± 0.1 MHz	
Energy loss per turn (dipoles only)	931 keV	
Dipole field (nominal)	1.3 T	
Beam size in dipoles	$\sigma_x - 87 \mu m, \ \sigma_y - 60 \mu m$	
Beam size in straights	$\sigma_x - 320 \mu m, ~\sigma_y - 16 \mu m$	
Number of possible Insertion devices	12	
Emittance	$\epsilon_x - 10 \text{ nm}$	
Coupling (nominal)	10/	

SR main narameters

Schematic view of a DBA cell in the SR arc

E. Nebot

The machines: The Australian Synchrotron

The facility comprises

- Linac (14m): 90keV to 100 MeV
- Booster resolution (130m): 100 MeV to 3 GeV)
- Storage Ring (216 m): 100 MeV to 3 GeV)

SR nominal parameters

Energy	3 GeV
Total design current	200 mA
Circumference	216 metres
RF frequency	499.654 ± 0.1 MHz
Energy loss per turn (dipoles only)	931 keV
Dipole field (nominal)	1.3 T
Beam size in dipoles	$\sigma_x - 87 \mu m, \ \sigma_y - 60 \mu m$
Beam size in straights	$\sigma_x - 320 \mu m, \ \sigma_y - 16 \mu m$
Number of possible Insertion devices	12
Emittance	$\epsilon_x - 10 \text{ nm}$
Coupling (nominal)	1%

Flexibility

Ş

- Bunch charge
 10+5-10+9 e⁻
 - Injection fill pattern:
 - Single bunch
 - Nominal: 75 bunches

Eduardo Nebot del Busto

The machines: The Test Beam Line

CLIC Test Facility (CTF3)

- Designed for demonstration of CLIC accelerating concepts and test of equipment
- The Test Beam Line (TBL) is situated in the CLIC Experimental Area

Ļ

The TBL

- Decelerating LINAC with 8 FODO cells
- Each half cell comprises:
 - 1 Power Extraction and Transfer Structure
 - 1 Beam Position Monitor
 - 1 Quadrupole
- Flexibility
 - beam current: 1 28 A (@ 3-12 GHz)
 - Pulse length: 100-1000 ns

PETS BPM Quad

TBL nominal parameters

Parameter	TBL
NPETS	16
Current (A)	28
Pulse Length (ns)	140
Initial energy, E _{ini} (MeV)	150
Final energy, Eend(MeV)	80
Norm. Emittance $\epsilon_{x,y}(\mu m rad)$	150
Beam Pipe radius, r ₀ (mm)	11.5

Eduardo Nebot del Busto

TBL Sketch

ASLS Sketch

Eduardo Nebot del Busto