Paper | Title | Page |
---|---|---|
MOPB042 | Beam Loss Monitors for the Cryogenic LHC Magnets | 139 |
|
||
Funding: This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289485. The Beam Loss Monitoring system of the Large Hadron Collider close to the interaction points contains mostly gas ionization chambers working at room temperature, located far from the superconducting coils of the magnets. The system records particles lost from circulating proton beams, but is also sensitive to particles coming from the experimental collisions, which do not contribute significantly to the heat deposition in the superconducting coils. In the future, with beams of higher brightness resulting in higher luminosity, distinguishing between these interaction products and dangerous quench-provoking beam losses from the circulating beams will be difficult. It is proposed to optimise by locating beam loss monitors inside the cold mass of the magnets, housing the superconducting coils, in a superfluid helium environment, at 1.9 K. This contribution will present results of radiation hardness test of p+-n-n+ silicon detectors which, together with single crystal Chemical Vapour Deposition diamond, are the main candidates for these future cryogenic beam loss monitors. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB059 | Development of an Ionization Profile Monitor Based on a Pixel Detector for the CERN Proton Synchrotron | 470 |
|
||
The transverse emittance measurement in the CERN Proton Synchrotron is currently performed using fast rotational wire scanners. These scanners cannot provide continuous bunch-by-bunch measurements and the expected future increase of the beam brightness will lead to an accelerated sublimation of the wire. A novel Ionization Profile Monitor is being constructed to cope with these challenges. The readout of this device will be based on a hybrid silicon pixel detector with a Timepix3 chip. Pixel detectors are sensitive to single electrons therefore eliminating the need for traditional Multi-Channel Plates, which suffer from ageing phenomena. The early digitization of the signal will reduce the susceptibility of the readout system to electromagnetic interference, while the time resolution of the chip allows the required bunch-by-bunch measurement. Due to the small length of the detector a new, simplified ion trap has been designed. Resistive glass plates are used to provide maximum uniformity of the electric field and to simplify construction. The guiding field will be provided by a new, self-compensating magnet. It is foreseen to have the device ready for testing with beam in 2016. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |