Author: Nosych, A.A.
Paper Title Page
TUPB047 Electrostatic Finite-element Code to Study Geometrical Nonlinear Effects of BPMs in 2D 418
 
  • A.A. Nosych, U. Iriso
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • J. Olle
    UAB, Barcelona, Spain
 
  We have developed a 2D finite element-based software for Matlab to study non-resonant effects in BPMs of arbitrary geometry, in particular the geometric nonlinearities. The developed code called BpmLab utilizes an open-source tetrahedral mesh generator DistMesh, combined with a short implementation of FEM with linear basis functions to find the electrostatic field distribution for boundary electric potential excitation. The BPM response as a function of beam position is calculated in a single simulation for all beam positions using the potential ratios, according to the Green's reciprocity theorem. The code offers ways to correct the geometrical nonlinear distortion, either by polynomials or by direct inversion of the electrode signals through numerical optimization. This work is an overview of the BpmLab capabilities to date, including its extensive benchmarking and validation against other methods  
poster icon Poster TUPB047 [8.291 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB048 Measurements and Calibration of the Stripline BPM for the ELI-NP facility with the Stretched Wire Method 423
 
  • A.A. Nosych, C. Colldelram, A. Crisol, U. Iriso, A. Olmos
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • F. Cioeta, A. Falone, A. Ghigo, M. Serio, A. Stella
    INFN/LNF, Frascati (Roma), Italy
  • A. Mostacci
    Rome University La Sapienza, Roma, Italy
 
  A methodology has been developed to perform electrical characterization of the stripline BPMs for the future Gamma Beam System of ELI Nuclear Physics facility in Romania. Several prototype units are extensively benchmarked and the results are presented in this paper. The BPM sensitivity function is determined using a uniquely designed motorized test bench with a stretched wire to measure the BPM response map. Here, the BPM feedthroughs are connected to Libera Brilliance electronics and the wire is fed by continuous wave signal, while the two software-controlled motors provide horizontal and vertical motion of the BPM around the wire. The electrical offset is obtained using S-parameter measurements with a Network Analyzer (via the "Lambertso" method) and is referenced to the mechanical offset.  
poster icon Poster TUPB048 [4.978 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)