Comparison of Feedback Controller for Link Stabilizing Units of the Laser Based Synchronization System used at the European XFEL

M. Heuer¹ G. Lichtenberg² S. Pfeiffer¹ H. Schlarb¹

¹Deutsches Elektronen Synchrotron Hamburg, Germany ²Hamburg University of Applied Sciences, Germany

MOCZB3

International Beam Instrumentation Conference 2014/09/15

Contents

- 1 Introduction
- 2 Link Stabilizing Unit
- 3 Introduction to Control
- 4 Implementation and Experimental Results
- 5 Conclusion and Outlook

Contents

- 1 Introduction
- 2 Link Stabilizing Unit
- 3 Introduction to Control
- 4 Implementation and Experimental Results
- 5 Conclusion and Outlook

European X-ray Free Electron Laser (XFEL)

Idea

- ▶ Build a Camera to capture ultrafast processes in an atomic scale
- ► E.g.: Make a movie of the folding process of biomolecules

Some Numbers

- ▶ Wavelength of 0.05 to 6 nm, Pulse duration of less than 100 fs (10^{-15})
- ightharpoonup Total facility length of $3.4\,\mathrm{km}$ with 101 accelerator modules

0000

Requirements

► The relative jitter between all link ends should be less as possible

Requirements

► The relative jitter between all link ends should be less as possible

Current State

► Heuristically tuned PI controller

Laser Based Synchronization System (LbSynch)

Requirements

▶ The relative jitter between all link ends should be less as possible

Current State

► Heuristically tuned PI controller

New Approach

Model based control

Laser Based Synchronization System (LbSynch)

Requirements

► The relative jitter between all link ends should be less as possible

Current State

► Heuristically tuned PI controller

New Approach

Model based control

1. Model the dynamics of the system

Laser Based Synchronization System (LbSynch)

Requirements

► The relative jitter between all link ends should be less as possible

Current State

► Heuristically tuned PI controller

New Approach

Model based control

- 1. Model the dynamics of the system
- 2. Synthesis a suitable controller with this model

Laser Based Synchronization System (LbSynch)

Requirements

► The relative jitter between all link ends should be less as possible

Current State

► Heuristically tuned PI controller

New Approach

Model based control

- 1. Model the dynamics of the system
- 2. Synthesis a suitable controller with this model
- 3. Verify the controller performance in an experiment

Problem Statement

Problem Statement

- ▶ How to synthesis a model based controller?
- ► Has a model based controller a better performance?

Contents

- 1 Introduction
- 2 Link Stabilizing Unit
- 3 Introduction to Control
- 4 Implementation and Experimental Result.
- 5 Conclusion and Outlook

 ntroduction
 LSU
 Control
 Experiments
 Conclusion

 0000
 ●
 000000
 000000
 00

 Introduction
 LSU
 Control
 Experiments
 Conclusion

 0000
 000000
 0000000
 00

 Introduction
 LSU
 Control
 Experiments
 Conclusion

 0000
 ●
 000000
 0000000
 00

Contents

- 1 Introduction
- 2 Link Stabilizing Unit
- 3 Introduction to Control
- 4 Implementation and Experimental Results
- 5 Conclusion and Outlook

u(t) output voltage applied to the piezo amplifier

- ightharpoonup u(t) output voltage applied to the piezo amplifier
- ightharpoonup y(t) the real timing difference

- \triangleright u(t) output voltage applied to the piezo amplifier
- \triangleright y(t) the real timing difference
- \triangleright $y_m(t) = y(t) + n(t)$ timing difference measured by the OXC

- \triangleright u(t) output voltage applied to the piezo amplifier
- \triangleright y(t) the real timing difference
- $ightharpoonup y_m(t)=y(t)+n(t)$ timing difference measured by the OXC
- ightharpoonup n(t) noise of the balanced detector

- ightharpoonup u(t) output voltage applied to the piezo amplifier
- ightharpoonup y(t) the real timing difference
- $ightharpoonup y_m(t) = y(t) + n(t)$ timing difference measured by the OXC
- ightharpoonup n(t) noise of the balanced detector
- lackbox $d_i(t)$ input disturbances, e.g. ripple of the piezo amplifier supply

- ightharpoonup u(t) output voltage applied to the piezo amplifier
- ightharpoonup y(t) the real timing difference
- $\triangleright y_m(t) = y(t) + n(t)$ timing difference measured by the OXC
- ightharpoonup n(t) noise of the balanced detector
- lacktriangledown $d_i(t)$ input disturbances, e.g. ripple of the piezo amplifier supply
- $lackbox{ } d_o(t)$ output disturbances, e.g. vibrations of the setup

$$T(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}$$

$$T(s) = \frac{P(s)C(s)}{1+P(s)C(s)}$$

high bandwidth controller

lacktriangle Tracking of a reference T(s) o 1

$$T(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}$$

$S(s) = 1 - T(s) = \frac{1}{1 + P(s)C(s)}$

high bandwidth controller

▶ Tracking of a reference $T(s) \rightarrow 1$

age 12/30

$$T(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}$$

$S(s) = 1 - T(s) = \frac{1}{1 + P(s)C(s)}$

high bandwidth controller

- ▶ Tracking of a reference $T(s) \rightarrow 1$
- Output Disturbance rejection $S(s) \to 0 \Rightarrow T(s) \to 1$

General Control Loop

$$T(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}$$

high bandwidth controller

- ▶ Tracking of a reference $T(s) \rightarrow 1$
- Output Disturbance rejection $S(s) \rightarrow 0 \Rightarrow T(s) \rightarrow 1$

$$S(s) = 1 - T(s) = \frac{1}{1 + P(s)C(s)}$$

high bandwidth controller

System output due to noisy measurements $T(s) \rightarrow 0$

General Control Loop

$$T(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}$$

high bandwidth controller

- ▶ Tracking of a reference $T(s) \rightarrow 1$
- Output Disturbance rejection $S(s) \rightarrow 0 \Rightarrow T(s) \rightarrow 1$

$$S(s) = 1 - T(s) = \frac{1}{1 + P(s)C(s)}$$

high bandwidth controller

- System output due to noisy measurements $T(s) \rightarrow 0$
- ightharpoonup Very large controller outputs u(t)

State Space Model

$$\begin{split} \dot{x}(t) = &Ax(t) + Bu(t) \,, \\ y(t) = &Cx(t) + Du(t) \,, \end{split}$$

State Space Model

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t) + Du(t),$$

- ightharpoonup x(t) states of the system (energy storages)
- ightharpoonup u(t) input to the system
- ightharpoonup y(t) output of the system

State Space Model

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t) + Du(t),$$

- ightharpoonup x(t) states of the system (energy storages)
- ightharpoonup u(t) input to the system
- ightharpoonup y(t) output of the system
- A describes the dynamic behavior of the system
- ightharpoonup B describes how the input acts on the state
- ightharpoonup C describes how the state are combined to the output
- D describes which inputs have a direct influence on the output

Model Identification

- $P(s) = \frac{\text{Measurement}}{\text{Identification Signal}}$
- ► Matlab System Identification Toolbox

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t) + Du(t),$$

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t) + Du(t),$$

$$u(t) = -Fx(t),$$

$$\begin{split} \dot{x}(t) = &Ax(t) + Bu(t) \,, \\ y(t) = &Cx(t) + Du(t) \,, \end{split}$$

$$u(t) = -Fx(t),$$

$$\min V = \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) dt,$$

$$\begin{split} \dot{x}(t) = & Ax(t) + Bu(t) \,, \\ y(t) = & Cx(t) + Du(t) \,, \end{split}$$

$$u(t) = -Fx(t),$$

$$\min V = \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) dt,$$

▶ Q and R are tuning parameter. e.g. $Q = C^T \cdot C$ and tune the response speed with R

$$\begin{split} \dot{x}(t) = & Ax(t) + Bu(t) \,, \\ y(t) = & Cx(t) + Du(t) \,, \end{split}$$

$$u(t) = -Fx(t),$$

$$\min V = \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) dt,$$

- ▶ Q and R are tuning parameter. e.g. $Q = C^T \cdot C$ and tune the response speed with R
- ▶ F = -lqr(A,B,C'*C,R);

$$\begin{split} \dot{x}(t) = &Ax(t) + Bu(t) \,, \\ y(t) = &Cx(t) + Du(t) \,, \end{split}$$

$$u(t) = -Fx(t)\,,$$

$$\min V = \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) dt,$$

- ightharpoonup Q and R are tuning parameter. e.g. $Q = C^T \cdot C$ and tune the response speed with R
- \triangleright F = -lqr(A,B,C'*C,R);
- ightharpoonup x(t) is not measured in most cases.

State Estimation

State Estimation

State Estimation

The dual problem to state feedback

State Estimation

- ► The dual problem to state feedback
- $ightharpoonup Q_{obsv}$ and R_{obsv} are again tuning parameter. e.g. $Q_{obsv} = B \cdot B^T$ and tune the filtering of the noise with R_{obsv}

State Estimation

- ► The dual problem to state feedback
- $ightharpoonup Q_{obsv}$ and R_{obsv} are again tuning parameter. e.g. $Q_{obsv} = B \cdot B^T$ and tune the filtering of the noise with R_{obsv}
- ▶ L = -lqr(A',C',B*B',Robsv);

Contents

- 1 Introduction
- 2 Link Stabilizing Unit
- 3 Introduction to Control
- 4 Implementation and Experimental Results
- 5 Conclusion and Outlook

 Introduction
 LSU
 Control
 Experiments
 Conclusion

 ○○○
 ○
 ○○○○○○
 ○○○○○○
 ○○○○○

Matlab VHDL Toolbox

- ► Extends the Xilinx System Generator Toolbox
- Automatic code generation from a Simulink model (no VHDL knowledge required)
- Simulation of the real behavior (saturation, overflow, fixed point precision, etc.)

Model Identification

 ntroduction
 LSU
 Control
 Experiments
 Conclusion

 0000
 0
 000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Model Identification

The model fits well to the dynamic behavior of the real plant.

Identification

$$A = \begin{bmatrix} -253.8 & 1.133 \cdot 10^5 & 935.9 \\ -1.133 \cdot 10^5 & -1138 & -2017 \\ 935.9 & -4035 & -1.346 \cdot 10^5 \end{bmatrix},$$

$$B = \begin{bmatrix} 112.9 & 237.9 & -209.5 \end{bmatrix},$$

$$C = \begin{bmatrix} 225.8 & -475.9 & -418.9 \end{bmatrix}$$

Effect of State Feedback

 ntroduction
 LSU
 Control
 Experiments
 Conclusion

 0000
 0
 000000
 000000
 00

Effect of State Feedback

Its possible to change the dynamic behavior e.g. increase the damping.

Control Startup

 Introduction
 LSU
 Control
 Experiments
 Conclusion

 0000
 0
 000000
 0
 0
 0

Control Startup

The model based controller reaches the steady state faster ...

Dynamic behavior of an input disturbances

 ntroduction
 LSU
 Control
 Experiments
 Conclusion

 0000
 0
 000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Dynamic behavior of an input disturbances

... and rejects disturbances much better than the PID controller.

Dynamic behavior of a coarse tuning step

 ntroduction
 LSU
 Control
 Experiments
 Conclusion

 0000
 0
 000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Dynamic behavior of a coarse tuning step

Effects measurable with PID controller but not with LQG.

Contents

- 1 Introduction
- 2 Link Stabilizing Unit
- 3 Introduction to Control
- 4 Implementation and Experimental Results
- 5 Conclusion and Outlook

Statements

Statements

► Use model based control approaches to a better performance

Statements

- ► Use model based control approaches to a better performance
- ► It is possible to achieve good control results for the LSU with a LQG controller

Conclusion

► An overview of the LbSynch System was given

- ► An overview of the LbSynch System was given
- ▶ It was shown how to synthesis a LQG controller

- ► An overview of the LbSynch System was given
- ▶ It was shown how to synthesis a LQG controller
- ▶ The design controller was tested in an experimental setup

 troduction
 LSU
 Control
 Experiments
 Conclusion

 000
 0
 000000
 0000000
 0●

Conclusion

Conclusion

- ► An overview of the LbSynch System was given
- ▶ It was shown how to synthesis a LQG controller
- ► The design controller was tested in an experimental setup

Outlook

 troduction
 LSU
 Control
 Experiments
 Conclusion

 000
 0
 000000
 0000000
 0●

Conclusion

Conclusion

- ► An overview of the LbSynch System was given
- ▶ It was shown how to synthesis a LQG controller
- ► The design controller was tested in an experimental setup

Outlook

► Test other model based controller types

 troduction
 LSU
 Control
 Experiments
 Conclusion

 000
 0
 000000
 0000000
 0●

Conclusion

Conclusion

- ► An overview of the LbSynch System was given
- ▶ It was shown how to synthesis a LQG controller
- ► The design controller was tested in an experimental setup

Outlook

- ► Test other model based controller types
- ▶ Include new MicroTCA boards and the final configuration

The End

Thank you very much for your attention

Further Reading

- L. Ljung. System identification: theory for the user. Prentice-Hall information and system sciences series. Prentice-Hall, 1987. ISBN 9780138816407. URL http://books.google.com/books?id=gpVRAAAAMAAJ.
- S. Skogestad and I. Postlethwaite. Multivariable Feedback Control Analysis and Design. John Wiley & Sons, Ltd, 2nd edition, 2005. ISBN 978-0-470-01168-3.
- K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Feher/Prentice Hall Digital and. Prentice Hall, 1996. ISBN 9780134565675. URL http://books.google.com/books?id=RPSOQgAACAAJ.

LQR via algebraic riccati equation

$$\begin{split} \dot{x}(t) = &Ax(t) + Bu(t)\,,\\ y(t) = &Cx(t) + Du(t)\,,\\ u(t) = &-Fx(t)\,,\\ \min V = &\int_0^\infty x(t)^T Qx(t) + u(t)^T Ru(t)\,dt\,,\\ F = &R^{-1}B^TP\\ A^TP + PA - PBR^{-1}B^TP + Q = 0 \end{split}$$

