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Abstract 
Recently, Jolly et al. presented an analysis of the rms 

emittance measurement errors from a first principles 
approach [1]. Their approach demonstrated the 
propagation of errors in the single-plane rms emittance 
determination from several instrument and beam related 
sources. We have extended the analysis of error 
propagation and estimation to the fully correlated 4-D 
phase space emittances obtained from pepperpot 
measurements. We present the calculation of the variances 
using a Cholesky decomposition approach. Pepperpot 
data from recent experiments on the NDCX-II beamline 
are described, and estimates of the emittances and 
measurement errors for the 4-D as well as the projected 
rms emittances in this coupled system are presented. 

INTRODUCTION 
Jolly, et al. [1] recently published an analysis of the 

data acquisition and uncertainty estimation of beam 
emittances derived from pepperpot measurements. There, 
they presented a first principles methodology for 
propagating measurement errors into the nonlinear 
functions of position, angle and beamlet intensity that are 
typically used to calculate the horizontal or vertical root-
mean-squared (rms) emittances. Estimates of 
measurement errors were discussed that stemmed from 
the practical implementation of the pepperpot 
measurement system. The dominant sources of 
measurement error were the spacing of holes in the 
pepperpot mask; the camera resolution and drift distance 
between mask and scintillation screen; and beam intensity 
variation and background intensity noise levels. 
Additional errors in the measurement system were not 
included, so that the estimates of uncertainty represent 
lower limits on the total error.  

A pepperpot image and its correlations to the 
background mask can be utilized to estimate the complete 
4-D phase space emittance by analyzing all 10 
independent correlation terms in the 4-D beam matrix. In 
this paper we extend Jolly, et al.’s formalism to estimate 
the uncertainty of the 4-D emittance and related quantities 
that include the correlations between the horizontal and 
vertical phase spaces. The results of this analysis can be 
applied to coupled systems found in solenoidal or skew 
quadrupole transport lattices, and beams that carry 
significant canonical angular momentum.  

CORRELATED PHASE SPACES 
The 4-D beam covariance matrix is constructed from 

the density-weighted, rms product averages of the beam 
distribution, 

 

4 =

(

 

〈𝑥𝑥〉 〈𝑥𝑥′〉 〈𝑥𝑦〉 〈𝑥𝑦′〉

〈𝑥𝑥′〉 〈𝑥′𝑥′〉 〈𝑥′𝑦〉 〈𝑥′𝑦′〉

〈𝑥𝑦〉 〈𝑥′𝑦〉 〈𝑦𝑦〉 〈𝑦𝑦′〉

〈𝑥𝑦′〉 〈𝑥′𝑦′〉 〈𝑦𝑦′〉 〈𝑦′𝑦′〉)

  (1) 

 
Here, the individual product terms are defined by 

 

〈𝑓𝑔〉 =
∑ 𝜌 𝑓 𝑔  

∑ 𝜌  
,  (2) 

 
where the index i labels the coordinates in the 4-D space 
of {x, x’, y, y’} and is the local beam density in that 
space. We assume that the 10 unique terms are linearly-
independent of each other.  

The 4-D beam matrix can be expressed in the 
symmetric, block form that reveals the separate, Cartesian 
sub-spaces as well as the correlation between them, 

 

4 = (
𝑥 𝐶

𝐶𝑇 𝑦
) .  (3) 

 
We note that other representations [2,3] are also used.  
The definitions of rms emittances follow from the 

determinants of the beam matrix. The determinant and 
emittance of the 2-D Cartesian (sub-)phase space has the 
well known definition: 

 
det 𝑥 = |𝑥| = 〈𝑥𝑥〉〈𝑥′𝑥′〉 − 〈𝑥𝑥′〉2 = 𝜀�̃�

2 . (4) 
 

We carry the definition to the 4-D space and 4-D 
emittance: 

𝜀4̃
2 = |4|.   (5) 

 
To compare the equivalent beam quality defined by the 4-
D emittance measure, we define an equivalent 2-D 
emittance 

𝜀2̃
2 = |2| = |4|

1/2.  (6) 
 

For transversely uncoupled phase spaces, 4 =

(
𝑥 0
0 𝑦

), and |2| = |𝑥||𝑦| so that 𝜀2̃2 = 𝜀�̃�𝜀�̃�. 

 
We utilize the equivalent 2-D rms emittance measure, 

𝜀2̃, as a basis of comparison with the single-plane rms 
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emittances, 𝜀�̃� and 𝜀�̃�. We will also make use of the 
following definition of normalized, edge emittances, 
𝜀 = 4𝛾𝛽𝜀 ̃, where 𝜀 ̃ is any of the above mentioned 2-D 
or single plane rms emittances. 

CHOLESKY DECOMPOSITION OF BEAM 
COVARIANCE MATRIX 

The analysis of error propagation from known 
measurement uncertainties into the 4-D or equivalent 2-D 
emittance measures can be made more computationally 
tractable if a matrix factorization is utilized. The 
Cholesky decomposition [4] is unique for positive-
definite, symmetric, square matrices. This factorization 
produces a product of a lower-diagonal matrix (L) with its 
transpose, an upper diagonal matrix (LT). Here, we opt to 
use a variant of the Cholesky decomposition, A = LDLT, 
where A is the original matrix, and D is a block diagonal 
form.  

The decomposition of the 4D beam covariance matrix 
 

4 = (
𝑥 𝐶

𝐶𝑇 𝑦
) = 𝐿𝐷𝐿𝑇

= (
I 0
𝑆 I

) (
𝐷1 0
0 𝐷2

) (I 𝑆𝑇

0 I
) 

(7) 
 
With this decomposition, |4| = |𝐷1||𝐷2|. In terms of 

the Cartesian sub-spaces and correlation matrix C, 
 

𝐷1 = 𝑥 ,     (8) 

𝐷2 = 𝑦 − 𝐶𝑇(𝑥
−1)

𝑇
𝐶.    (9) 

 
This last form has its determinant expressed in terms of 
the elementary products as 

 
|𝐷2| = (〈𝑦𝑦〉 −

𝜈 

|Σ |
) (〈𝑦′𝑦′〉 −

𝜈 

|Σ |
) −

(〈𝑦𝑦′〉 −
𝜈 

|Σ |
)
2

,    (10) 
where 
 
𝜈1 = 〈𝑥𝑦〉2〈𝑥′𝑥′〉 − 2〈𝑥𝑦〉〈𝑥𝑥′〉〈𝑥′𝑦〉 +
〈𝑥𝑥〉〈𝑥′𝑦〉2, 
 
𝜈2 = 〈𝑥𝑦〉〈𝑥′𝑥′〉〈𝑥𝑦′〉 − 〈𝑥𝑦〉〈𝑥𝑥′〉〈𝑥′𝑦′〉 +
          〈𝑥′𝑦〉〈𝑥𝑥〉〈𝑥′𝑦′〉 − 〈𝑥′𝑦〉〈𝑥𝑥′〉〈𝑥′𝑦′〉, 
 
𝜈4 = 〈𝑥𝑦′〉2〈𝑥′𝑥′〉 − 2〈𝑥𝑦′〉〈𝑥𝑥′〉〈𝑥′𝑦′〉 +
〈𝑥𝑥〉〈𝑥′𝑦′〉2.               (11) 

ANALYSIS OF VARIANCE 
The calculation of the combined variance proceeds 

typically [5]. A function, f, with independent variables (x, 

y, z, . . .), has a variance, 𝜎𝑓2, defined by 𝜎𝑓2 = (
 𝑓

 𝑥
)
2

𝜎𝑥
2 +

(
 𝑓

 𝑦
)
2

𝜎𝑦
2 + (

 𝑓

  
)
2

𝜎 
2 +.  .  ., where the variance in the 

measurement of the independent variables is given by 𝜎𝑥2, 
𝜎𝑦
2, etc. 
We calculate the variance of the 4-D beam matrix 

determinant, against the set of independent 
variables: 〈𝑥𝑥〉, 〈𝑥′𝑥〉, 〈𝑥′𝑥′〉, 〈𝑥𝑦〉, 〈𝑥𝑦′〉, 〈𝑥′𝑦〉, 〈𝑥′𝑦′〉, 
〈𝑦𝑦〉, 〈𝑦𝑦′〉, and 〈𝑦′𝑦′〉. 

 

𝜎|Σ |
2 = ∑ (

 |Σ |

 〈 𝑏〉
)
2

𝜎〈 𝑏〉
2

〈 𝑏〉 ,  (12) 

 
where 〈𝑎𝑏〉 is a member of the set of 10 linearly-
independent products.  

The variance of the equivalent 2-D emittance is 
determined by applying the linear uncertainty estimation 
to (6) 

𝜎�̃� 
2 = ∑ (

 �̃� 

 〈 𝑏〉
)
2
𝜎〈 𝑏〉
2

〈 𝑏〉 =

∑ ([
𝑑�̃� 

𝑑|Σ |
] [

 |Σ |

 〈 𝑏〉
])
2

𝜎〈 𝑏〉
2

〈 𝑏〉 =

∑ [
1

4|Σ |
 
 

]

2

([
 |Σ |

 〈 𝑏〉
])

2

𝜎〈 𝑏〉
2

〈 𝑏〉  (13) 

𝜎�̃� 
2 =

𝜎|  |
 

16|Σ |
 
 

   (14) 

NDCX-II PEPPERPOT DESIGN AND 
MEASUREMENTS 

The NDCX-II facility permits user experiments in the 
warm, dense matter regime, where matter is isochorically 
heated near solid density to temperatures in the eV range. 
Ion beams compressed to ns-scale pulse duration and 
focused with mm-scale spots onto micron-scale thickness 
targets can accomplish this task of target heating within 
the characteristic time of hydrodynamic expansion of the 
target material. The detailed physics design [6] and 
engineering [7] of the NDCX-II accelerator facility have 
been previously described. The first stage of beamline 
commissioning demonstrated the successful tuning of the 
beam transport lattice and the accelerating waveforms to 
deliver 30-50 nC, with normalized edge emittance of 1-2 
-mm-mrad, and to compress the pulse duration from 
~600 ns at injection to <50 ns (FWHM) at the target plane 
[8]. 

The diagnostic end station houses the main complement 
of intercepting beam diagnostics, depicted in Fig. 1. The 
full instrumentation package includes a deep Faraday cup 
(14.2 cm long by 12 cm wide with a 10 cm entrance 
aperture), a horizontal slit and slit-cup analyzer, a vertical 
slit and slit-cup analyzer, a pepperpot mask and a 10.16-
cm (4-inch) square optical scintillator (100 m thick 
Al203). A fast gated (~30 ns minimum), image intensified 
(ICCD) camera (Princeton Instruments PI-MAX II, 16-
bit, 512x512 CCD array) is rear-mounted to collect the 
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fluorescence signal from the scintillator plate. The deep 
Faraday cup is differentially biased to reject incoming 
electrons entrained with the ion beam, as well as to collect 
secondary electrons emitted during the ion current 
collection. The collector plane of the deep Faraday cup 
and the front surface of the scintillator coincide with the 
experimental target plane. Various planar targets may be 
mounted at the end of the scintillator/Faraday cup paddle. 
High voltage SHV feedthroughs allow bias potentials to 
be applied to the Faraday cup and slit cup suppressor and 
collector electrodes, and to the bias mesh on the upstream 
face of the optical scintillator. Capacitive dividers allow 
low amplitude beam-induced signals to be acquired from 
the high voltage biased electrodes. 

 

 
Figure 1: NDCX-II diagnostic end station. 

 
The pepperpot mask (Fig. 2) and associated scintillator 

diagnostic has been designed and initially optimized to 
function with the high perveance, ~50-350 keV lithium 
ions. The mask is fabricated from 12.7 m 304 stainless 
steel, and holds a rectangular pattern of 0.254 mm (0.010-
inch) diameter holes spaced 3.81 mm (0.150-inch) apart 
(center-to-center). A scintillator screen is rigidly attached 
to the pepperpot mask holder, and spaced 17.5 mm 
downstream from the mask. 

Analysis of the pepperpot images is accomplished 
utilizing a custom Python analysis routine: (i) beam-
derived images and background images (resolution 4.7 
pixels/mm) are obtained with defined gate windows 
around the beam current peak; (ii) background images are 
subtracted from beam-generated images; (iii) a Sobel 
filter [9] is applied to further assist in discriminating 
peaks from background; (iv) the images peaks are 
mapped to the known grid pattern to generate spatially 
correlated offsets and construct the 4-D transverse phase 
space; (v) background level cuts are applied based on 
calculating the Courant-Snyder invariant for each peak 
(equivalent to an L_{2} metric in phase space) and 
rejecting outlying, 'unphysical' peaks [10]; and (vi) the 
final values for the emittances and their uncertainties are 
calculated. 

 

 
Figure 2: Pattern for the NDCX-II pepperpot mask. 

 
The systematic measurement uncertainties, 

𝜎𝑥
2, 𝜎𝑥′

2 , 𝜎𝑦
2, 𝜎𝑦′

2 , are  determined from the geometry of the 
pepperpot mask, camera resolution, and scintillator 
standoff distance.  

 
𝜎𝑥
2 = 𝜎𝑦

2 =
(           𝑔) 

12
+

(          ) 

12
  (15) 

 

𝜎𝑥′
2 = 𝜎𝑦′

2 =
(tan−1 [

1

               𝑑 𝑓𝑓
])
2

12
 

(16) 
In the NDCX-II pepperpot, the systematic errors are 1.1 
mm (𝜎𝑥, 𝜎𝑦) and 3.5 mrad (𝜎𝑥′, 𝜎𝑦′). 

The   variation in intensity is calculated for each pixel 
in the image region of interest (ROI). Equal numbers of 
images are acquired with the beam present as are 
background images without beam. Average values and 
their variances are calculated on a pixel-by-pixel basis for 
both the beam image and the background sets. The 
variance in intensity at each pixel is then determined by 
𝜎𝜌 
2 = 𝜎   𝑔  

2 + 𝜎𝑏   𝑔    𝑑 
2  , where the index i labels  

each individual pixel. The calculation of the variances of 
the product terms, eqn. (2), is given in the Appendix. 

Pepperpot Image Analysis 
Results of the pepperpot analysis are shown in Figs. 3, 

4, 5 below. The background subtracted image is shown in 
Fig. 3 alongside the mapping of the pixel intensity onto 
the transverse coordinate space (x-y). The horizontal 
(𝑥 − 𝑥′) and vertical (𝑦 − 𝑦′) phase spaces are shown in 
Fig. 4. Finally, the velocity-space distributions are shown 
in Fig. 5. Here the angular momentum is defined as  
𝑗 = 𝑥 𝑦′ − 𝑥′ 𝑦 , where the index i  labels individual 
beamlets in the pepperpot image. 
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Figure 3: Pepperpot false color intensity image (left) and mapping (right). 

 

 
Figure 4: Cartesian phase space projections in the horizontal (left) and vertical (right) planes. 

 

 
Figure 5: Velocity space (left) and angular momentum correlation (right).
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Emittance Measurements 
We apply the variance analysis to determine the 

uncertainties present in the emittance measurements as 
the beam focus is changed by varying the strength of the 
final focus magnet. The results of the scan are shown in 
Fig. 6. We can see that the uncertainties in the emittance 
measurement vary as the beam is focused - the 
uncertainties increase significantly as the waist moves 
from downstream of the pepperpot mask to upstream of 
the mask. 
 

 
Figure 6: Variation of beam intensity, spot size, and 
emittances at the target plane with change in the final 
focus solenoid peak field. 

 
We seek to understand the contributions of the 

individual measurement errors to the overall measurement 
uncertainty. To do so we recalculate the total uncertainties 
while sequentially equating all but one of the errors to 
zero. The results are shown in Fig. 7. We see that the 
relative influence of the position error increases, and that 
of the angle error decreases, as the beam is brought to a 
waist at the mask location. The opposite trend is observed 
as the waist moves upstream. The relative influence of the 
intensity error remains essentially constant for a 
converging beam, but increases as the waist moves farther 
upstream. 

SUMMARY 
We have performed the construction of the uncertainty 

in the fully correlated 4-D emittances from errors inherent 
in pepperpot measurements. We have demonstrated the 
effect of individual errors on measurements of correlated 
beams. 
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Figure 7: Contribution of the individual measurement 
errors to the emittance uncertainties. The total uncertainty 
is the quadrature sum of components. 

APPENDIX: PRODUCT UNCERTAINTY 
The net uncertainty in the product terms are derived. 
 

〈𝑓𝑔〉 =
∑ 𝜌 𝑓 𝑔  

∑ 𝜌  
   (A1) 

 

𝜎〈𝑓𝑔〉
2 = ∑ {(

 〈𝑓𝑔〉

 𝜌 
)
2

𝜎𝜌 
2 + (

 〈𝑓𝑔〉

 𝑓 
)
2

𝜎𝑓 
2 + (

 〈𝑓𝑔〉

 𝑔 
)
2

𝜎𝑔 
2 } 

  (A2) 
 

𝜎〈𝑓𝑔〉
2 = ∑ {𝜎𝜌 

2 [
𝑓 𝑔 

∑ 𝜌  
−

〈𝑓𝑔〉

(∑ 𝜌  ) 
]
2

+ 𝜎𝑓 
2 [

𝜌 𝑔 

∑ 𝜌  
]
2

+ 

𝜎𝑔 
2 [

𝜌 𝑓 

∑ 𝜌  
]
2

}   (A3) 
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