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Abstract

In any beam-line, one of the basic measurements in the

beam-diagnostics is the measurement of the Beta-Function.

This can be achieved, in Storage Rings, by taking the tune

change obtained when varying the intensity of quadrupoles,

or by using the matrix response to fit the corresponding pa-

rameters, or by shaking the beam to obtain a betatron mo-

tion. In accelerators like the LHC, the Beta-Function mea-

surement is done from the Phase Advance Measurement

using the Transfer Matrix. In this paper, a study of a new

algorithm or numerically approximation for this measure-

ment is presented, as well as the results of simulations on

LHC and CLIC lattices. The deduced and implemented al-

gorithm takes into account a fraction of the both transverse

planes measurements. A random (uniform) deviation of the

MAD-X phase values is taken to obtain the measured val-

ues and then used to study the Beta Function measurement

for a different amount of orbits. There are observed cases

where the improvement is close to 30% and 50% compare

to a traditional method.

INTRODUCTION

The measurement of the Beta Function in accelerators

is an important task during the commissioning, because

all the properties of the focusing structure are described

and calculated using the Twiss functions or Courant-Snyder

parameters. For any beam-line, in colliders and trans-

port lines of high energy particles, the horizontal and ver-

tical Beta functions determine the transverse beam sizes

that change around the storage ring. During the beam-

diagnostics, to know the twiss parameters implies, in gen-

eral, to be able to determine all the dynamic beam parame-

ters. [1],[2],[3].

One of the techniques used to measure the beta-function

in colliders or storage rings, is by using the tune shift in-

duced by quadrupole excitation, this consists in to detect

the shift in the betatron tune as the strength of an individ-

ual quadrupole magnet is varied, pag. 17 on [4]. The the-

oretical expression is obtained from the trace of the corre-

sponding transport matrix for the entire ring multiplied by

the perturbation matrix, which represents the effect of the

gradient change. In the simplified final expression, each

transverse beta function depends on the tune change in the

corresponding plane, the gradient change, and constants.

A specific variation of this method, using two symmetric

placed quadrupoles, allows measuring the beta-function at

the interaction point in colliders [5].
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A second method is given by shaking the beam to ob-

tain a betatron motion. The betatron oscillations are mea-

sured with multi-turn beam position monitors (BPMs) and

the beta function is calculated from the betatron phase ad-

vance between three adjacent BPMs, pag. 21 on [4]. The-

oretically, from the Transfer Matrix on element to element,

one can obtain a set of two independent equations with the

information of three BPMs. The final expression involves

the matrix elements depending of the designed optics and

the tan value of the measured phase advances. The α mea-

sure can also be obtained with this procedure.

Additionally, having a betatron motion in the beam-line

allows measuring the Beta Function using an interpolation

of the twiss functions between the BPMs. In this way, the

matrix response is used to fit the corresponding parameters

assuming that the magnetic gradients in the transfer line

model between the monitors 1 and 3 are perfect. The the-

oretical expressions are similar of what was discussed for

the previous method. Computers are used to calculate the

fit, where the measured variables are normalized to create a

symmetric covariance matrix to be solved by least squares.

The final expression depends on the measured phase ad-

vances and Beta Function in the BPMs. [1], [5].

Another simple method is to measure the orbit change

when a steering corrector magnet is excited at different val-

ues. This method use a BPM nearby the corrector, and it

is where the beta function value is obtained. The theory

involves the expression of the closed-orbit distortion in the

presence of a single dipole kick. The final beta function

measurement if obtained from the tan value of the tune,

the closed-orbit distortion, the steering error value and con-

stants. [4], [2].

For instance, in the LHC the measurement of the Beta

Function for the relativistic beams is performed by using

the second method described above, eq. (1) in [6].

THEORY

During the measurement of any optical quantity in an ac-

celerator, it is expected to have a correspondence between

the model scenario and what is measured at the machine.

Using the transfer matrix for the beta function measure-

ment, it is found that the following should be fullfilment

cot ∆Φide
1,2−cot ∆Φide

1,3 = cot ∆Φmeas
1,2 −cot ∆Φmeas

1,3 (1)

where, Φ are the phase advance in the transverse plane,

at the three different longitudinal positions 1, 2 and 3;

the labels ide and meas stand for the ’ideal’ and ’mea-

sured’ scenarios, respectively. The discrepancies among

the model phase advances, or ’ideal’ values, and the ob-
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served or ’measured’ values, are then propagated to the

beta function measurement.

The proposed new algorithm is to correlate both planes

to a common factor, which as before it is expected to be

true. It implies the following:

cot ∆Φx,ide
1,2 − cot ∆Φx,ide

1,3

cot ∆Φy,ide
1,2 − cot ∆Φy,ide

1,3

=
cot ∆Φx,mea

1,2 − cot ∆Φx,mea
1,3

cot ∆Φy,mea
1,2 − cot ∆Φy,mea

1,3

(2)

This allows counting on the coupling that could inter-

fered in the Beta Function measurement. In this way, the

improvement algorithm consist of take into account the in-

formation of both planes. Therefore, there exists an optical

function that would be called ρ from where the β function

can be measured.

βx,measure = ρz[cot ∆Φy,ide
1,2 − cot ∆Φy,ide

1,3 ] (3)

βy,measure = ρz[cot ∆Φx,ide
1,2 − cot ∆Φx,ide

1,3 ] (4)

Additionally an optimization based on the possibility of

small deviations of the expected values, turns into a prob-

lem of mathematical geometry which I solved to be

ρz =















βz,ide τ(x,2)±cot ∆Φx,mea
1,2

τ(y,2)±cot ∆Φy,mea
1,2

or

βz,ide τ(x,2)±cot ∆Φx,mea
1,3

τ(y,2)±cot ∆Φy,mea
1,3

(5)

where τ(z,m) = cot∆Φz,mea
m−1,m − cot ∆Φz,mea

m−1,m+1 and

its depends on how close the measure fraction is close to the

ideal fraction. These differences, although small quantities,

are also what may improve the measurement when high

noise (meaning a high deviation of the phase advanced) is

presented.

The approach described in eq.(5) is not obtained from

a statistical quantity, or based in them, as most of the tra-

ditional methods does. Although, the combinations of the

above equations imply that the fitting is done to obtained

the number 1.

TRANSFER MATRIX REMARK

The Transfer Matrix that allows measuring the Beta-
Function in a collider, is given by:

0

B

B

@

r

βf
βi

(cos φfi + αi sin φfi)
p

βf βi sin φfi

−
1+αiαf√

βf βi
sin φfi +

αi−αf√
βf βi

cos φfi

r

βf
βf

(cos φfi − αf sin φfi)

1

C

C

A

(6)

When applying to three adjacent BPMs, the value of the

beta function at the first lattice element can be obtained as

a function of the matrix elements, on the first row of the

matrices that transfer from the element 1 to 2, and from 1

to 3, usually called m11, m12 ,n11, and n12, respectively,

[7]. See the details of the theory development for LEP [1]

and the application at LHC in [6].

RESULTS ON LATTICES

The proposed new algorimth is tested on the lattices ex-

amples for two storage rings, using the standard software

MAD-X [8] by a comparison with the traditional way to

obtain the beta function measurement. The lattice source

code is obtained from the MAD-X examples at [9].

The storage rings optics choose for this paper are the

LHC and CLIC. In the optics corresponding to the CLIC

lattice, a ring of 357.46 m of length is simulated, to a tune

correspondence of 72.69 2π rad in the horizontal plane and

35.42 2π rad in the vertical plane. The maximum beta

function at those planes are 30.00 m and 9.21 m, respec-

tively. The beam consists of 3.1×109 positrons. For the

LHC case, the simulated sequence is the Beam1, which is

composed by 1.15×1011 protons in a ring of 26658.88 m

length. The protons have an energy of 450 GeV, reaching a

horizontal tune of 64.28 2π rad with a maximum beta func-

tion of 592.8 m, and a vertical tune of 59.31 2π rad with a

maximum beta function of 611.97 m.

Figure 1: Phase Advances for a sector of the CLIC lattice,

without and with noise for 2, 10 and 20 degrees of devia-

tion, for the Y plane.

To obtain the measurement for the comparison, just a

sector of each ring is used. In the cases for the CLIC lattice,

35 BPMS are taken into account, while for the LHC, 39

BPMs located at the arcs 4 and 5 are used. This is to have

a difference in the phase advance in between the adjacent

BPMs, and therefore having a better analysis on the Beta

Function measurement.

The ’ideal’ values during this test corresponds to the

quantities obtained using the twiss function of MAD-X.

These values are obtained for the phase advances and the

Beta Fuction in both transverse planes.

The ’measured’ values are interpreted as the total value

of each ’ideal’ phase advance plus or less a deviation ac-

cording with a random uniform distribution. Three max-

imum deviations are studied, those values are 2.0, 10.0

and 20.0 degrees. The deviation value is half equally dis-

tributed around the ’ideal’ values, to give as positive as

negative deviations. These values are obtained using the
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random library of PYTHON [10].

Figure 2: Phase Advances for a sector of LHC lattice , with-

out noise and with noise of 2, 10 and 20 degrees.

Figures 1 and 2 shows the corresponding ’ideal’ and

’measured’ phases advances, for the studied cases in the

plane Y using the CLIC and LHC optics, respectively. The

ide values are denoted by the label “sim” and linked with a

line. The meas values are presented using points of differ-

ent colors for the studied deviations and denoted by adding

the label “noi”.

The plots for the two storage rings lattices are straight

lines with a positive slope as expected. Similar plots were

obtained in the horizontal plane, for both lattices. Even-

more the noise is almost not perceptive to the eye.

Using the noised phase advance values at three adjacent

locations the equations (3) and (4) are applied to the corre-

sponding transverse plane to obtain the Beta Function, as

well as the traditional equations given by eq.(6) to obtain

the same quantity, along the segment of the ring.

The measured value of the beta function is affected by

the noised phase advances as presented in figures 3 and 4,

for the different lattices. In the plots the noise is now per-

ceptible. The notation used is the label “sim” for the ideal

beta, label “t” for the traditional β- measurement, label “a”

for the new algorithm, and together with the numbers 2, 10

and 20 according with the distribution used for the noise.

For each beta measurement a relative error to the ideal

beta is obtained. And for the entire segment a global rela-

tive error, denoted by Err., is asociated to be the average of

the errors at the different locations. Each particular noised

segment is going to be called an orbit, and with different

random numbers used each time, different noised segments

are obtained.

Taking different orbits Tables 1 and 2 are constructed, for

each lattice independently. The first colummn is the stud-

ied case label, it corresponds with the amount of simulated

noise and the type of theory used for the β measurement;

the notation is the same as explained for Figures 3 and 4.

The second and third column are the average of the global

error, in each transverse plane with its corresponding un-

certainty. The forth a final column contains the number of

orbits used to obtained the average of the global error.

For the 2 degrees cases the new algorithm has a small

increment of the global error % compare to the traditional

way, in both cases the LHC and CLIC, this could be ex-

plain by the fact than a very small amount of noise pre-

sented does not favors the use of the both noise planes to

do the Beta measurement. Specifically for the LHC cases,

the results show that both -t and -a approaches are on the

same order to make the measurement.

Table 1: Beta Fuction Err. Using CLIC Lattice
Case. Err. < βx > Err. < βy > Num.

[%] [%] Orb.

20-t 14.0064 ± 0.47 21.5973 ± 1.1 10

20-a 11.1688 ± 0.46 11.3702 ± 0.54 10

20-t 14.0898 ± 0.20 21.0753 ± 0.37 100

20-a 10.4034 ± 0.14 10.4941 ± 0.14 100

20-t 14.4705 ± 0.063 20.8487 ± 0.11 1000

20-a 10.5313 ± 0.046 10.6460 ± 0.046 1000

10-t 6.6708 ± 0.2369 10.1476 ± 0.35 10

10-a 8.6858 ± 0.34 8.9647 ± 0.35 10

10-t 6.9188 ± 0.093 9.9884 ± 0.14 100

10-a 8.8234 ± 0.10 8.9866 ± 0.10 100

10-t 6.8664 ± 0.029 10.0190 ± 0.050 1000

10-a 8.7920 ± 0.031 8.9517 ± 0.031 1000

2-t 1.4010 ± 0.062 1.9980 ± 0.11 10

2-a 2.4296 ± 0.097 2.4272 ± 0.098 10

2-t 1.3594 ± 0.018 2.0168 ± 0.031 100

2-a 2.4009 ± 0.040 2.4002 ± 0.040 100

2-t 1.3584 ± 0.0056 1.9917 ± 0.010 1000

2-a 2.3827 ± 0.012 2.3823 ± 0.012 1000

Figure 3: Beta Functions for a sector of the CLIC lattice,

without and with noise for 2, 10 and 20 degrees of deviation.

With 10 degrees of noise, for the CLIC lattice the be-

haivor of the global error for the vertical plane is oppossed
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with respect to the horizontal plane. Err always increases

by an amount of 20% of the traditional method by using

the new algorithm for the horizontal plane, but it always

decreases for the vertical plane by an amount of 10% of the

traditional one.

Using the LHC lattice, for all the cases with 10 degrees

noise, the new algorithm (-a) decreases the global error

Err, to value close to 30% each time, compare with the

traditional way to do the measurement for both planes.

With a noise of 20 degrees, for both lattices, it is found

that the average of the global error is decreasing when us-

ing the new algorithm compare to the traditional one. This

is expected, if the new algorithm is over stabilized values

for the fraction of noise, and without favored to a partic-

ular plane. The reported values imply that percents of 26

and 49 for the horizontal and vertical planes for CLIC, and

29 to 27 for the horizontal and vertical planes for LHC,

are reduced in the global error, when the new algorithm is

applied compare with the traditional one.

Taking the average of the β function at each location be-

fore taking the global error, it is not studied in here to have

the completed effect of the noise. Taking that average will

reduced the noise in advance.

Table 2: Beta Fuction Err. Using LHC Lattice
Case. < Err.βx > Err.βy > Num.

[%] [%] Orb.

20-t 23.9845 ± 1.6 21.0685± 0.53 10

20-a 16.0208 ± 0.94 15.6167± 0.70 10

20-t 22.8245± 0.53 22.7674 ±0.37 100

20-a 16.7904± 0.45 16.3095± 0.37 100

20-t 22.3585± 0.16 22.7038± 0.12 1000

20-a 16.9809± 0.15 16.5626± 0.11 1000

10-t 10.4422± 0.43 11.2105± 0.65 10

10-a 7.1806± 0.54 7.1872± 0.57 10

10-t 10.3884± 0.16 11.0943± 0.17 100

10-a 7.2590± 0.15 7.2989± 0.15 100

10-t 10.4041± 0.055 10.9358± 0.054 1000

10-a 7.5054± 0.053 7.4269± 0.051 1000

2-t 1.9998± 0.075 2.1757± 0.12 10

2-a 2.2319± 0.051 2.2607± 0.058 10

2-t 2.0484± 0.033 2.1714± 0.033 100

2-a 2.2017± 0.027 2.2133± 0.027 100

2-t 2.0329± 0.010 2.1555± 0.010 1000

2-a 2.2014± 0.0092 2.2127± 0.0090 1000

In general, in all cases, the observed uncertainty of the

global error is reduced or keeping in the same level as using

the traditional way to do the measurements.

Nevertheless it is possible to run the new algorithm to

calculate the beta function for the entire ring. The observed

advantage is that there are few times when the measure-

ments can be done with the new algorithm, in comparison

with the old case. This could means that the difference in

the phase advance is less restricted in new algorithm case.

Further studies could determine at which conditions the

new algorithm favors, and to stablished the differences

when using the traditional fitting processes, and or the fact

that both plane measurements are involved. This would de-

pend in the tunes of the accelerator used and the distance

Figure 4: Beta Functions for a sector of the LHC lattice ,

without and with noise for 2, 10 and 20 degrees of deviation.

between the elements from whre the measurement is done.

CONCLUSION

The algorithm introduced in this paper allows reducing

the noise presented when performing the Beta Function

measurement. In applications to the LHC Mad-X lattice, it

is found cases where the improvement is close to 30% com-

pare to the traditional one, when the noise is 10o or 20o;

using the CLIC Mad-X lattice a reduction close to 25%

and 50% are observed with a noise of 20o . Althought fur-

ther studies are needed to establish the ideal conditions for

its application in real machines, this new algorithm could

serve as a complement and/or improvement to the tradi-

tional technique.
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