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Abstract 
In a synchrotron light source like SOLEIL, Beam Position 

Monitors (BPM) are optimized to have the highest 
sensitivity for an electron beam passing nearby their 
mechanical center. Nevertheless, this optimization is done 
to the detriment of the response linearity when the beam 
is off-centered for dedicated machine physic studies. To 
correct for the geometric non-linearity of the BPM, we 
have applied an algorithm using boundary element 
method. Moreover the BPM electronics is able to provide 
position data at a turn-by-turn rate. Unfortunately the 
filtering process in this electronics mixes the information 
from one turn to the neighboring turns. An additional 
demixing algorithm has been set-up to correct for this 
artefact. The paper reports on performance and limitations 
of those two algorithms that are used at SOLEIL to 
correct the BPM data. 

INTRODUCTION 
BPM Block Description 

SOLEIL BPM blocks have been designed to optimize 
the position measurement resolution for a centred beam. 
Its geometry is the same as the one that is generally used 
in the other parts of the machine (all arcs) for impedance 
reasons. Aperture is 84 mm in horizontal and 25 mm in 
vertical. Electrodes are circular buttons of 10 mm 
diameter spaced by 16 mm in horizontal and 25 mm in 
vertical (Fig. 1). 

 
Figure 1: Cross section of a BPM. Design optimizes the 
resolution in the centre of the chamber. 

Non Linear BPM Response 
The beam position measurement is given by the usual 

“difference over sum” method:  
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With Φi the potential read on electrode (A, B, C and D), 
and KX, KZ the geometric factor for each transverse plane.  

This commonly used formula is linear for a centred 
beam but becomes strongly nonlinear in the horizontal 
plane when the beam goes to large amplitudes, typically 
above ±2 mm (Fig. 2). 

 
Figure 2: Read beam position (green) with respect to the 
real beam position (blue) in the horizontal plane for a 
centred beam in vertical plane. Linear region is limited to 
± 2mm around the BPM centre. 

CORRECTION OF THE NON LINEAR 
BPM RESPONSE 

Theoretical Reconstruction 
Beam position can also be reconstructed from the 

potential read on the four electrodes. The method used is 
based on a preliminary theoretical calculation of the BPM 
response [1, 2, 3]: knowing the theoretical beam position, 
potential on the four electrodes is calculated using the 
Poisson equation and the boundary element method. This 
step requires the definition of a mesh to slice the vacuum 
chamber wall into elementary parts. Then, in a second 
step the theoretical BPM response is inverted using the 
standard Newton method. This method gives a very good 
beam position reconstruction (Fig. 3) for a large area (~± 
15 mm in H, ~±8 mm in V around the BPM centre), 
compared to the difference over sum method.  

Figure 3: Reconstruction of the position of the beam (blue 
points) using the difference over sum method (green 
points) and the Newton inversion (red points). 
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In small areas (lob shapes) close to the buttons, the 
convergence does not work. It is because one of the points 
in the iterative process goes outside the vacuum chamber 
and in this case, convergence is lost. An additional 
checking has been implemented in the algorithm to 
retrieve any iterative point from the outside to the internal 
side of the vacuum chamber. With this correction, 
reconstruction in all the centre area of the BPM is almost 
perfect with an error close to the numerical resolution 
(Fig. 4). 

 

 
Figure 4: Error between the theoretical beam position and 
the rebuild position using boundary element and Newton 
inversion method with the additional lob correction. In the 
area of interest (±15mm in H, ± 10 mm in V around the 
BPM centre), the error is below 10-10 mm 

 
At large horizontal amplitudes the iterative process for 

Newton method cannot converge as it has to cross an area 
(crescent-like shape on left and right sides on Fig. 4) 
where the Jacobian cancels out in the mathematical 
resolution: because of this singularity no mathematical 
solution is founded. Nevertheless by choosing a starting 
point (for the iterations) on the good side of the crescent, 
the reconstruction works fine. The number of iterations to 
reconstruct with an error below 10-6 is less than ~15 for 
any point in the vacuum chamber except on this crescent 
(Fig. 5). Overall this method is much faster than directly 
solving the Poisson equation using a mesh code for static 
electromagnetic problem. 

Figure 5: Number of iterations required to reach a 
reconstruction with an error below 10-6. The convergence 
cannot be reached for the points located on areas with a 
crescent shape. 

Experimental Reconstruction 
Reconstruction of theoretical data is done using the 

same mesh as the one used to calculate the BPM 
response. In this case, whatever the mesh granularity, the 

reconstruction error is always very good. Nevertheless, in 
the case of experimental data, the mesh granularity that is 
chosen impacts the results of the reconstruction because 
of self-consistency between the simulation and the 
reconstruction model. The area where the reconstruction 
is the most sensitive to the mesh definition is on the 
horizontal wall (few % errors), then on the oblique wall 
(~ % errors), and has finally little influence far from the 
BPM centre on the vertical wall. The reconstruction 
dependence to the mesh definition shows an asymptotic 
value when the mesh becomes infinitely thin (Fig. 6). 

 
Figure 6: Dependence of the reconstruction to the mesh 
definition. Case of the horizontal plane reconstruction for 
a mesh between 10 and 500 points on the horizontal wall. 
Reconstruction reaches an asymptotic value for an 
infinitely small mesh granularity. 

 
Intuitively, the most accurate reconstruction is done for 

an infinitely thin mesh. But the computation time needed 
to reconstruct with a large number of points (>200) to 
define the mesh increase drastically. Nevertheless, this 
dependence can easily be fitted by equation (3): 
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where x is the number of points in the mesh. Actually, the 
reconstruction can be done with a reasonable (~100) 
number of points in the mesh and then post-corrected. 

A dedicated experiment on the machine has been 
carried on to verify the efficiency of the reconstruction: 
horizontal beam position has been scanned from 0 to 15 
mm with static bumps (limited to 15 mm by the 
horizontal physical acceptance), and reconstructed 
position has been compared to how much the scraper has 
to be moved to maintain a lifetime (on purpose) reduced 
to 1 hour (case 1) or 2 hours (case 2) (Fig. 7).  

 
Figure 7: Good agreement between the position 
reconstruction (red) and an experimental check using the 
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scraper (green) or the model (blue), compared to the usual 
difference over sum method results (black). 

DEMIXING OF THE TURN-BY-TURN 
BPM ELECTRONICS DATA 

SOLEIL BPM Electronics is able to provide position 
data at the revolution frequency sampling rate. 
Nevertheless, due to internal filtering when decimating 
ADC samples (at 109 MHz) down to turn-by-turn data (at 
846 kHz), those samples are not independent and contain 
information from more than one turn. This phenomenon 
can be seen looking at the impulse response of the BPM 
electronics. This has been registered on the sum signal of 
the BPMs when the beam is doing only one turn in the 
storage ring, and killed at the end of the turn (Fig. 8). 

 
Figure 8: Impulse response of the BPMs measured when 
the beam is doing only one turn in the storage ring. 
Electronics filters over ~6 turns to produce turn-by-turn 
samples. 

A correction algorithm has been developed in order to 
correct for that “mixing”, based on the method described 
in [4]: as each turn-by-turn sample is a linear combination 
of ADC samples, a correction filter can be built from the 
impulse response. This is done in the frequency domain 
by inverting the Fourier transform of the impulse 
response. Then, going back to the time domain the 
resulting filter can be convoluted with the position data to 
make the turns independent (Fig. 9). 
 

 
Figure 9: Construction of the correction filter. The fast 
Fourier transform of the impulse response is inverted and 
then brought back to the time domain to obtain the 
correction filter to be convoluted with the turn-by-turn 
data. 

 

This demixing correction can be combined with the 
correction of the nonlinear BPM response in the case the 
turn-by-turn data are used to measure the beam position at 
large amplitudes (Fig. 10). 

 
Figure 10: Turn-by-turn BPM corrections in the case of a 
response to a pinger magnet in the horizontal plane. Raw 
data (black curve) are first demixed (blue curve) and then 
corrected for the non-linearities (red curve).  

CONCLUSION 

Dedicated algorithm have been developed to correct for: 
the non-linearities induced by the BPM block geometry 
when the beam is at large amplitude, and for the mixing 
of the information between neighbouring turns for turn-
by-turn data that are computed by the electronics. Both 
corrections give satisfactory results and are used for the 
machine physics studies.  

ACKNOWLEDGMENT 
This paper reports the result of the work performed by 

Benoît Beranger during its Master-internship at SOLEIL. 
The authors would also like to thank Guenther Rehm for 
the helpful discussions about demixing principle and 
trainee Foued Talbi for his initial work on the BPM 
response based on boundary condition method.  

REFERENCES 
[1] T. SHINTAKE et al., «Sensitivity calculation of beam 

position monitors using boundary element method,» 
Nuclear Instruments and Methods in Physics Research, pp. 
146-150, 1987. 

[2] A. Stella, «Analysis of the Dafne beam position monitor 
with a boundary element method,» Dafne Technical Note 
CD-10, December 19th, 1997 

[3] R. W. Helms et al, Phys. Rev. ST Accel. Beams 8, 062802 
(2005). 

[4] R. Bartolini et al., “Calibration of the nonlinear ring model 
at the Diamond Light Source”, Phys. Rev. ST Accel. 
Beams 14, 054003 (2011). 

WEPD21 Proceedings of IBIC2014, Monterey, CA, USA

ISBN 978-3-95450-141-0
686Co

py
rig

ht
©

20
14

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

BPMs and Beam Stability
Wednesday poster session


