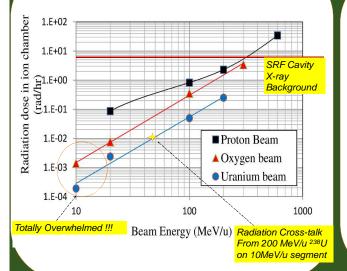
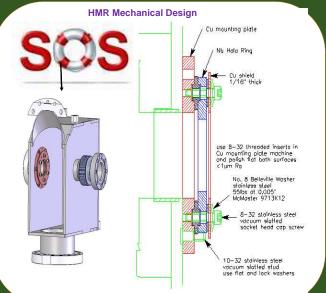
Beam Loss Monitor System for the Low-Energy Heavy-Ion FRIB Accelerator

Zhengzheng Liu, Tom Russo, Bob Webber, Yoshishige Yamazaki, Yan Zhang Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 USA

Abstract

Radiation transport simulations reveal shortcomings in the use of ion chambers for the detection of beam losses in low-energy, heavy-ion accelerators like FRIB. Radiation cross-talk effects due to the specific FRIB paper-clip geometry complicate locating specific points of beam loss. We describe an economical and robust solution that complements ionization chambers. A specifically designed device, the halo monitor ring (HMR), is implemented upstream of each cryomodule to detect beam loss directly. Together with fast response neutron scintillators, the new integrated BLM system satisfies both machine protection and sensitivity requirements.


FRIB loss detection guideline

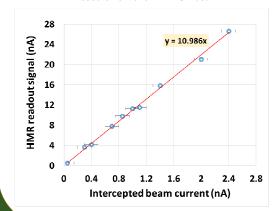

Beam Loss Distribution [W/m]	HMR Intercepted Current at LS1 [nA]	HMR Intercepted Current at LS3 [nA]	Stop Beam?	BLM Response Time
≤1	≤ 100	≤ 10	No	
1 < loss < 10	$10^2 < I1 < 10^3$	$10 < I3 < 10^2$	Yes	1 sec
≥10	≥ 10 ³	≥ 10 ²	Yes	15 μs

Signal requirement for HMR

- The electronics shall detect 100 pA (≤0.01 W/m) in a time scale of 60 seconds, with maximum error of 50pA.
- The electronics shall detect 10 nA (≤1 W/m) in a second, with maximum error of 1nA.
- The electronics shall respond to 100 nA (\leq 10 W/m) within 15 μ s.

Radiation Dose by 1 W/m Beam Loss at Different Energies

FRIB BLM System Planning


Туре	Quantity	Location	
Halo Monitor Ring 49		Upstream of each cryomodule	
Neutron Scintillator	24	Uniformly distributed in the accelerator closure	
Movable Ion Chamber	20	Areas of expected high beam power deposition & high energy part of FRIB	

HMR Measurement with 18O3+

 $I_{HMR} = \alpha \cdot I_{ion}$ Due to secondary electrons

No need of electron suppression voltage!

Measurement of α with ¹⁸O³⁺ beam

